The canonical structure of Poincaré gauge theory

M. Blagojević — Divčibare, 12–14 September 2011

Contents

- Introduction
- Hamiltonian and constraints
- Conserved charges
- Nonlinear constraint effects
- Covariant Hamiltonian formalism
- 3D gravity with torsion

1. Introduction

A. Localization of Poincaré symmetry (Utiyama 1956; Kibble, Sciama 1961)

• **Rigid** Poincaré group = the isometry group of M_4 (translations and Lorentz rotations) Invariance of the matter field Lagrangian:

$$\delta_0 \mathcal{L}_M(\phi, \partial_k \phi) = 0$$
 where $\delta_0 \phi := (\varepsilon^k P_k + \frac{1}{2} \omega^{ij} M_{ij}) \phi$

• Localization: $\varepsilon^k \to \varepsilon^k(x)$, $\omega^{ij} \to \omega^{ij}(x) \Rightarrow$ invariance of $\mathcal{L}_M(\phi, \partial_k \phi)$ lost! Invariance restored with the help of compensating fields $b^k = b^k_{\ \mu} dx^{\mu}$, $A^{ij} = A^{ij}_{\ \mu} dx^{\mu}$:

 $\mathcal{L}_M(\phi, d\phi) \to b\mathcal{L}_M(\phi, \nabla\phi)$

where $b = \det(b^k_{\mu})$ and $\nabla = d + \frac{1}{2}A^{ij}\Sigma_{ij}$ is the covariant derivative. Field strengths – the torsion and the curvature:

$$T^i = \nabla b^i$$
, $R^{ij} = dA^{ij} + A^i_{\ k}A^{kj}$.

Gauge field Lagrangian:

$$\mathcal{L}_G = R + T^2 + R^2$$

• Geometric interpretation: Riemann-Cartan geometry of spacetime, with $\nabla g_{ij} = 0$

The canonica structure of PG theory

B. Canonical formalism with constraints (Dirac, Bargmann and others 1950s)

• Gauge invariance of $\mathcal{L} \Rightarrow$ some dyn. variables are unphysical (arbitrary funct's of time) in electrodynamics: $F_{00} = 0 \Rightarrow A_0$ is dynamically undetermined

- What happens in the canonical formalism?
- (a) there are constraints in the phase space; in electrodynamics: $\pi^0 = \partial \mathcal{L} / \partial \partial_0 A_0 \approx 0$ (primary constraint)

(b) for consistency, constraints must be preserved in time: $\dot{\pi}^0 = \{\pi^0, H_T\} = \partial_\alpha \pi^\alpha \approx 0 \text{ (secondary constraint)} \quad \alpha = 1, 2, 3$

(c) Hamiltonian contains arbitrary multipliers:

 $H_T = -A_0(\partial_\alpha \pi^\alpha) + u\pi^0 + \cdots$, where $\partial_\alpha \pi^\alpha$ and π^0 are first class (FC) constraints

(d) FC constraints produce gauge transformations: $\delta_0 A_\mu = \{A_\mu, G\} = \partial_\mu \varepsilon$, where G is the gauge generator

2. Hamiltonian and constraints

In PG theory, independent dyn. variables are: tetrad b^i , Lorentz connection $A^{ij} = -A^{ji}$

• Einstein-Cartan theory: $\mathcal{L} = -aR + matter$ (Nester 1977, Nikolić 1995)

Field equations: $R_{i\mu} - \frac{1}{2}b_{i\mu}R \sim \text{energy-momentum current } \tau_{i\mu}$ torsion $\sim \text{spin current } \sigma_{ij\mu}$

2. Hamiltonian and constraints

In **PG theory**, independent dyn. variables are: tetrad b^i , Lorentz connection $A^{ij} = -A^{ji}$

• Einstein-Cartan theory: $\mathcal{L} = -aR + \text{matter}$ (Nester 1977, Nikolić 1995)

Field equations: $R_{i\mu} - \frac{1}{2}b_{i\mu}R \sim \text{energy-momentum current } \tau_{i\mu}$ torsion \sim spin current $\sigma_{ij\mu}$

• Quadratic PG th.: $\mathcal{L} \sim R + R^2 + T^2 + \text{matter}$ (parity preserving, 9 free param's) Canonical analysis (MB and Nikolić 1983; Nikolić 1984): $b^i{}_0$ and $A^{ij}{}_0$ are unphysical variables \Rightarrow Dirac-ADM form of the Hamiltonian:

 $\mathcal{H}_c = b^i_{\ 0} \mathcal{H}_i - \frac{1}{2} A^{ij}_{\ 0} \mathcal{H}_{ij} \qquad \mathcal{H}_T = \mathcal{H}_c + u \cdot \phi$

 \mathcal{H}_i and \mathcal{H}_{ij} are always present – sure constraints If the parameters in Lagrangian take on some critical values \Rightarrow additional, if-constraints ϕ Results:

- All critical parameters and if-constraints are **identified**
- Consistency analysis of the constraints is completed

3. Conserved charges

Dirac believed that all FC constraints generate unphysical (gauge) transformations Castellani (1981) formulated an algorithm for construction of the canonical gauge generator \Rightarrow the canonical gauge generator G for PG theory (MB, Nikolić and Vasilić 1988)

■ Boundary conditions ⇒ asymptotic symmetries ⇒ conservation laws

Technical procedure (Regge and Teitelboim 1974): The gauge generator $G = G[\varphi, \partial \varphi; \pi, \partial \phi]$ acts on the fields via the PB operation \Rightarrow it must be differentiable – achieved by adding a surface term: $\tilde{G} = G + E$ \Rightarrow the conserved charge = the value of $\tilde{G} \approx E$ (since $G \approx 0$)

3. Conserved charges

Dirac believed that all FC constraints generate unphysical (gauge) transformations Castellani (1981) formulated an algorithm for construction of the canonical gauge generator \Rightarrow the canonical gauge generator G for PG theory (MB, Nikolić and Vasilić 1988)

■ Boundary conditions ⇒ asymptotic symmetries ⇒ conservation laws

Technical procedure (Regge and Teitelboim 1974): The gauge generator $G = G[\varphi, \partial \varphi; \pi, \partial \phi]$ acts on the fields via the PB operation \Rightarrow it must be differentiable – achieved by adding a surface term: $\tilde{G} = G + E$ \Rightarrow the conserved charge = the value of $\tilde{G} \approx E$ (since $G \approx 0$)

- In PG theory (MB and Vasilić 1988)
- assume that spacetime is asymptotically Minkowskian
- construct $\tilde{G} = (\tilde{P}_i, \tilde{M}_{ij})$ to describe the asymptotic Poincaré symmetry
- identify the conserved charges:

energy-momentum = the value of $\tilde{P}_i \approx E_i$ angular momentum = the value of $\tilde{M}_{ij} \approx E_{ij}$

The canonica structure of PG theory

5

4. Nonlinear constraint effects

PG theory defined by 9 parameters in \mathcal{L} – what is an acceptable choice?

- Some of the standard theoretical requirements:
- massive propagating modes with v < c (no tachions) and E > 0 (no ghosts) (Sezgin and Nieuwenhuizen 1980)
- well posed initial value problem

there is a strong correlation with the values of can. critical parameters (Dimakis 1989)

- classical solutions should have positive energy (Katanaev 1987)

1st and 2nd requirement based on the linear approximation scheme 3rd - of limited practical value

4. Nonlinear constraint effects

PG theory defined by 9 parameters in \mathcal{L} – what is an acceptable choice?

- Some of the standard theoretical requirements:
- massive propagating modes with v < c (no tachions) and E > 0 (no ghosts) (Sezgin and Nieuwenhuizen 1980)
- well posed initial value problem

there is a strong correlation with the values of can. critical parameters (Dimakis 1989)

- classical solutions should have positive energy (Katanaev 1987)

1st and 2nd requirement based on the linear approximation scheme 3rd - of limited practical value

A new, canonical test of viability of PG (Chen, Nester and Yo 1991) In PG theory, linearization with respect to a given background may change the number and/or type of constraints ⇒ modified physical content

New requirement:

the canonical structure of the nonlinear theory should remain the same after linearization

In PG theory:

there are only two good torsion modes, scalar $(J^P = 0^+)$ and pseudoscalar $(J^P = 0^-)$, defined with respect to an M_4 background \Rightarrow they uniquely define acceptable PG Lagrangians

Torsion = dark energy!? (Shie, Nester and Yo 2008) Homogeneous and isotropic cosmology contains only $J^P = 0^{\pm}$ torsion modes. Lagrangian with scalar torsion mode:

$$\mathcal{L} \sim a_0 R + b_0 R^2 + a_1 (T^2$$
-terms)

spin 0^+ torsion mode is able to produce **dark energy effects**:

- the present-day accelerated expansion of the Universe, which slows down

- a realistic value of the Hubble constant

7

5. Covariant Hamiltonian formalism

The standard canonical formalism is based on the concept of **physical state at a time** $t \Rightarrow$ **not manifestly** covariant

Dirac (1949) considered dynamical evolution along any direction in spacetime

 Manifestly covariant canonical formalism (Nester 1991, Hecht 1993, and others), based on

$$\pi^0 = \frac{\partial \mathcal{L}}{\partial \partial_0 \phi} \quad \rightarrow \quad \pi^\mu = \frac{\partial \mathcal{L}}{\partial \partial_\mu \phi}$$

In PG theory:

- construct the first order form of \mathcal{L} : $\mathcal{L} = T^i \wedge \pi_i + R^{ij} \wedge \pi_{ij} - V(\tau, \rho, b)$

- define $\mathcal{H}(\xi)$, ξ timelike; then, allow ξ to be either timelike or spacelike, like Dirac
- $-H[\xi] = \int_{\mathcal{M}} \mathcal{H}(\xi)$ is not differentiable $\tilde{H}[\xi] = H[\xi] + E[\xi]$, where $E[\xi] = \int_{\Sigma} B(\xi)$ is the **conserved charge**

Nester et al. found a **universal** expression for $E(\xi)$, valid for a **large number** of b. c., such as: M_4 , (A)dS, and Bondi (radiation) b. c.

A very practical result!

The canonica structure of PG theory

8

6. 3D gravity with torsion

Topological 3D gravity with torsion (Mielke and Baekler 1991)

$$\mathcal{L} = -aR - 2\Lambda_0 + \alpha_3 \mathcal{L}_{CS}(A) + \alpha_4 \varepsilon^{ijk} T_{ijk}$$

- BTZ black hole with torsion (Garcıa et al. 2003)
- AdS asymptotic symmetry ⇒ two Virasoro algebras with classical central charges
 Classical central charges produce quantum effects, such as
 black hole entropy (MB and Cvetković 2006):

$$S = rac{2\pi r_+}{4G} + 4\pi^2 lpha_3 \Big(pr_+ - 2rac{r_-}{\ell} \Big)$$
 where $p =$ the strength of torsion

6. 3D gravity with torsion

Topological 3D gravity with torsion (Mielke and Baekler 1991)

$$\mathcal{L} = -aR - 2\Lambda_0 + \alpha_3 \mathcal{L}_{CS}(A) + \alpha_4 \varepsilon^{ijk} T_{ijk}$$

- BTZ black hole with torsion (Garcıa et al. 2003)
- AdS asymptotic symmetry ⇒ two Virasoro algebras with classical central charges
 Classical central charges produce quantum effects, such as
 black hole entropy (MB and Cvetković 2006):

$$S = rac{2\pi r_+}{4G} + 4\pi^2 lpha_3 \Big(pr_+ - 2rac{r_-}{\ell} \Big)$$
 where $p =$ the strength of torsion

3D gravity with propagating torsion (MB and Cvetković, work in progress):

$$\mathcal{L} = -aR - 2\Lambda_0 + L_{T^2} + L_{R^2}$$

Exploring the **canonical stability under linearization** with respect to

- Minkowski and AdS background.

One expects to see certain differences!

Constrained Hamiltonian formalism clarifies basic dynamical features of PG theory:
 – local and asymptotic symmetries, conserved charges, the number of physical modes

- **Constrained Hamiltonian formalism** clarifies basic dynamical features of PG theory:
- local and asymptotic symmetries, conserved charges, the number of physical modes
- At the same time, it leads to very practical predictions:
- general expression for the conserved charges
- criterion for good PG theories
- simple explanation of the mysterious concept of dark energy

- Constrained Hamiltonian formalism clarifies basic dynamical features of PG theory:
- local and asymptotic symmetries, conserved charges, the number of physical modes
- At the same time, it leads to very practical predictions:
- general expression for the conserved charges
- criterion for good PG theories
- simple explanation of the mysterious concept of dark energy
- It shows that there is no sharp border between classical and quantum:
- central charges are both classical and quantum objects

- Constrained Hamiltonian formalism clarifies basic dynamical features of PG theory:
- local and asymptotic symmetries, conserved charges, the number of physical modes
- At the same time, it leads to very practical predictions:
- general expression for the conserved charges
- criterion for good PG theories
- simple explanation of the mysterious concept of dark energy
- It shows that there is no sharp border between classical and quantum:
- central charges are both classical and quantum objects
- Similar analysis can be applied to other gauge theories of gravity

- **Constrained Hamiltonian formalism** clarifies basic dynamical features of PG theory:
- local and asymptotic symmetries, conserved charges, the number of physical modes
- At the same time, it leads to very practical predictions:
- general expression for the conserved charges
- criterion for good PG theories
- simple explanation of the mysterious concept of dark energy
- It shows that there is no sharp border between classical and quantum:
- central charges are both classical and quantum objects
- Similar analysis can be applied to other gauge theories of gravity
- Classical canonical structure has had an important influence on the foundation of both the canonical and the path-integral method of quantization