Introductio)
0000	
0	

Extra gauge symmetries in BHT gravity

Milutin Blagojević Branislav Cvetković¹

¹Institute of Physics, Belgrade, Serbia

Gravity: new ideas for unsolved problems In honour of 67th birthday of Milutin Blagojević 12-14 September 2011, Divčibare, Serbia

Extra gauge symmetries in BHT gravity

Introduction	Lagrangian dynamics	Canonical analysis	Concluding remarks
0000	000		

Outline Introduction

BHT gravity Notations and conventions

Lagrangian dynamics

First order formulation

Linearized equations of motion

Extra gauge symmetry

Canonical analysis

Hamiltonian and constraints

Classification of constraints

Canonical structure of the linearized theory at the critical point

Extra gauge symmetry

Concluding remarks

The talk is based on papers:

- M. Blagojević and B. Cvetković, Extra gauge symmetries in BHT gravity, JHEP 03 (2011) 139;
- M. Blagojević and B. Cvetković, Hamiltonian analysis of BHT massive gravity, JHEP 01 (2011) 082.

Introduction ●○○○ ○	Lagrangian dynamics 000 0 0	Canonical analysis 000 0 0 0	Concluding remarks
BHT gravity			

- Recently, Bergshoeff, Hohm and Townsend (BHT) proposed a parity conserving theory of gravity in three dimensions (3D), defined by adding certain curvature-squared terms to the Einstein-Hilbert action.
- With the cosmological constant Λ₀, σ = ±1 and a = 1/16πG the action takes the form:

$$I = a \int d^3x \sqrt{g} \left(\sigma R - 2\Lambda_0 + \frac{1}{m^2} K \right) , \ K := R_{ij} R^{ij} - \frac{3}{8} R^2 .$$

where R_{ij} is the Ricci tensor and R the scalar curvature.

When BHT gravity is linearized around the Minkowski ground state, it is found to be equivalent to the Fierz-Pauli theory for a free massive spin-2 field. The theory is ghosts-free, unitary and renormalizable.

Introduction ○●○○ ○	Lagrangian dynamics 000 0 0	Canonical analysis 000 0 0 0 0	Concluding remarks
BHT gravity			

- The overall picture is changed when we go over to the (A)dS background, where various dynamical properties, such as unitarity, gauge invariance or boundary behavior, become more complex.
- ► The particle content of the BHT gravity depends on the values of coupling constants. Maximally symmetric vacuum state defined by $G_{ij} = \Lambda_{\text{eff}} \eta_{ij}$, where Λ_{eff} the effective cosmological constant, solves the BHT field equations if Λ_{eff} solves a simple quadratic equation:

$$\Lambda_{\rm eff}^2 + 4m^2 \sigma \Lambda_{\rm eff} - 4m^2 \Lambda_0 = 0 \, . \label{eq:electropy}$$

For Λ₀/m² = −1, two solutions for Λ_{eff} coincide, and we have a unique vacuum state. In that case, one finds an extra gauge symmetry in the linear approximation, and massive modes become partially massless.

Extra gauge symmetries in BHT gravity

Introduction oo●o o	Lagrangian dynamics 000 0 0	Canonical analysis ooo o o o	Concluding remarks
BHT gravity			

- Dynamical characteristics of a gravitational theory take a particularly clear form in the constrained Hamiltonian approach.
- Analyzing the nature of constraints in the fully nonlinear BHT gravity, we discovered the special role of an extra condition:

$$\Omega^{00} := \sigma g^{00} + rac{G^{00}}{2m^2}
eq 0$$
 .

which, when applied to a maximally symmetric solution, takes the familiar form $\Lambda_0/m^2 \neq -1$.

In the region of space where Ω⁰⁰ ≠ 0, the resulting theory is found to possess *two* Lagrangian degrees of freedom, which corresponds to two helicity states of the massive graviton excitation.

Introduction ○○○● ○	Lagrangian dynamics 000 0 0	Canonical analysis ooo o o o	Concluding remarks
BHT gravity			

- We extend our investigation to the *critical point* $\Lambda_0/m^2 = -1$ in the maximally symmetric sector of the theory, by studying the canonical structure of the BHT gravity *linearized* around the maximally symmetric background.
- Analyzing the constraint structure of the linearized theory, we construct the canonical generator of *extra gauge symmetry*, which is responsible for transforming two massive graviton excitations into a single, partially massless mode.
- By comparing these results with those obtained nonperturbatively, we can understand how the canonical structure of the BHT gravity is changed in the linearization process.

Introduction	Lagrangian dynamics 000 0 0	Canonical analysis 000 0 0 0	Concluding remarks

Notations and conventions

- Our conventions are as follows:
 - the Latin indices (i, j, k, ...) refer to the local Lorentz frame, the Greek indices (μ, ν, λ, ...) refer to the coordinate frame, and both run over 0,1,2;
 - the metric components in the local Lorentz frame are η_{ij} = (+, -, -); totally antisymmetric tensor ε^{ijk} is normalized to ε⁰¹² = 1.
- Our notation follows the Poincaré gauge theory (PGT) framework in 3D:
 - fundamental dynamical variables are the triad field bⁱ and the Lorentz connection ωⁱ (1-forms),
 - $T^{i} = db^{i} + \varepsilon^{ijk}\omega_{j}b_{k}$ and $R^{i} = d\omega^{i} + \frac{1}{2}\varepsilon^{i}{}_{jk}\omega^{j}\omega^{k}$ are the corresponding field strengths, the torsion and the curvature (2-forms),
 - ► the relation to the standard 4D notation is given by $\omega^{ij} = -\varepsilon^{ij}{}_k \omega^k, R^{ij} = -\varepsilon^{ij}{}_k R^k.$

Introduction 0000 0	Lagrangian dynamics ●○○ ○	Canonical analysis 000 0 0 0	Concluding remarks
First order formulation			

- The BHT massive gravity with a cosmological constant is formulated as a gravitational theory in Riemannian spacetime. Instead of using the standard Riemannian formalism, we find it more convenient to use the triad field and the spin connection as fundamental dynamical variables.
- The description of the BHT massive gravity can be technically simplified as follows.
 - (a) We use the triad field b^i and the spin connection ω^i as independent dynamical variables.
 - (b) The Riemannian nature of the connection is ensured by imposing the vanishing of torsion with the help of the Lagrange multiplier $\lambda^i = \lambda^i_{\ \mu} dx^{\mu}$.
 - (c) Finally, by introducing an auxiliary field $f^i = f^i_{\ \mu} dx^{\mu}$, we transform the term *K* into an expression linear in curvature.

Introduction	Lagrangian dynamics	Canonical analysis	Concluding remarks
0000	000	000	
	ő	õ	

First order formulation

The Lagrangian is given by:

$$\begin{split} L &= a \left(2\sigma b^{i} R_{i} - \frac{1}{3} \Lambda_{0} \varepsilon_{ijk} b^{i} b^{j} b^{k} + \frac{1}{m^{2}} L_{K} \right) + \lambda^{i} T_{i} \,, \\ L_{K} &= R_{i} f^{i} - V_{K} \,, \quad V_{K} := \frac{1}{4} f_{i}^{\star} \left(f^{i} - f \, b^{i} \right) = \mathcal{V}_{K} \,\hat{\epsilon} \,, \end{split}$$

where $f = f_k^k$ and $\hat{\epsilon} = b^0 b^1 b^2$ is the volume 3-form.

Variation with respect to basic dynamical variables yields field equations, which imply that spacetime is Riemannian and:

$$f_{ij} = 2L_{ij}, \qquad \lambda_{ij} = rac{2a}{m^2}C_{ij},$$

where L_{ij} and C_{ij} are the Schouten and the Cotton tensor:

$$L_{ij} = R_{ij} - \frac{1}{4} \eta_{ij} R, \qquad C_{ij} = \varepsilon_i^{mn} \nabla_m L_{nj}.$$

Lagrangian dynamics ○○● ○	Canonical analysis 000 0 0 0	Concluding remarks
	·	
	Lagrangian dynamics oo● ○ ○	Lagrangian dynamics Canonical analysis ○○● ○○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

First order formulation

Basic field equation of BHT gravity takes the form:

$$\sigma G_{ij} - \Lambda_0 \eta_{ij} - \frac{1}{2m^2} K_{ij} = 0,$$

where $K_{ij} := T_{ij} - 2(\nabla_m C_{in})\varepsilon^{mn}{}_j$ and T_{ij} is the energy-momentum tensor associated to \mathcal{L}_K .

 An important set of algebraic consequences of the field equations reads

$$\begin{split} f_{\mu\nu} &= f_{\nu\mu} \,, \\ \lambda_{\mu\nu} &= \lambda_{\nu\mu} \,, \qquad \lambda = 0 \,, \\ \sigma f + 3\Lambda_0 + \frac{1}{2m^2} \mathcal{V}_K &= 0 \,. \end{split}$$

The last consequence represents trace of the basic field equation.

Introduction 0000 0	Lagrangian dynamics ○○○ ○	Canonical analysis 000 0 0 0	Concluding remarks

Linearized equations of motion

► Introducing the notation $Q_A = (b^i{}_\mu, \omega^i{}_\mu, f^i{}_\mu, \lambda^i{}_\mu)$, we now consider the linearized form of the theory around a maximally symmetric solution \bar{Q}_A , characterized by

$$ar{G}_{ij} = \Lambda_{\mathrm{eff}} \eta_{ij}, \qquad ar{f}^i{}_\mu = -\Lambda_{\mathrm{eff}} \, ar{b}^j{}_\mu, \qquad ar{\lambda}^i{}_\mu = \mathbf{0},$$

The linearization is based on the expansion

$$Q_{A}=ar{Q}_{A}+\widetilde{Q}_{A},$$

where \tilde{Q}_A is a small excitation around \bar{Q}_A .

The trace of the basic (linearized) field equation reads:

$$\left(\sigma + \frac{\Lambda_{\rm eff}}{2m^2}\right) \bar{h}_i^{\ \mu} \left(\tilde{f}^i_{\ \mu} + \Lambda_{\rm eff}\,\tilde{b}^i_{\ \mu}\right) = 0\,.$$

► For the *critical value* of parameters, $\Lambda_{\text{eff}} + 2\sigma m^2 = 0$ ($\Lambda_0/m^2 = -1$), this equation is identically satisfied.

Introduction 0000 0	Lagrangian dynamics ooo • •	Canonical analysis 000 0 0 0	Concluding remarks
Extra gauge symmetry			

- When we have a maximally symmetric background, the critical condition implies that the massive graviton of the linearized BHT gravity (with two helicity states) becomes a (single) partially massless mode; simultaneously, there appears an extra gauge symmetry in the theory.
- By a systematic analysis of the related canonical structure, we discover that this symmetry has the following form:

$$\begin{split} \delta_{E} \tilde{\boldsymbol{b}}^{i}{}_{\mu} &= \epsilon \bar{\boldsymbol{b}}^{i}{}_{\mu} ,\\ \delta_{E} \tilde{\boldsymbol{\omega}}^{i}{}_{\mu} &= -\varepsilon^{ijk} \bar{\boldsymbol{b}}_{j\mu} \bar{\boldsymbol{h}}_{k}{}^{\nu} \bar{\nabla}_{\nu} \epsilon ,\\ \delta_{E} \tilde{\boldsymbol{f}}^{i}{}_{\mu} &= -2 \bar{\nabla}_{\mu} (\bar{\boldsymbol{h}}^{j\nu} \bar{\nabla}_{\nu} \epsilon) + \Lambda_{\text{eff}} \epsilon \bar{\boldsymbol{b}}^{i}{}_{\mu} ,\\ \delta_{E} \tilde{\lambda}^{i}{}_{\mu} &= \mathbf{0} , \end{split}$$

where ϵ is an infinitesimal gauge parameter.

Introduction 0000 0	Lagrangian dynamics 000 0 0	Canonical analysis ●○○ ○ ○	Concluding remarks

Hamiltonian and constraints

The primary constraints are given by:

$$\begin{split} \phi_i^{\ 0} &:= \pi_i^{\ 0} \approx 0 \,, \qquad \phi_i^{\ \alpha} := \pi_i^{\ \alpha} - \varepsilon^{0\alpha\beta} \lambda_{i\beta} \approx 0 \,, \\ \Phi_i^{\ 0} &:= \Pi_i^{\ 0} \approx 0 \,, \qquad \Phi_i^{\ \alpha} := \Pi_i^{\ \alpha} - 2a\varepsilon^{0\alpha\beta} \left(\sigma b_{i\beta} + \frac{1}{2m^2} f_{i\beta}\right) \approx 0 \\ \rho_i^{\ \mu} \approx 0 \,, \qquad P_i^{\ \mu} \approx 0 \,. \end{split}$$

The canonical Hamiltonian can be conveniently written as:

$$\begin{split} \mathcal{H}_{c} &= b^{i}{}_{0}\mathcal{H}_{i} + \omega^{i}{}_{0}\mathcal{K}_{i} + f^{i}{}_{0}\mathcal{R}_{i} + \lambda^{i}{}_{0}\mathcal{T}_{i} + \frac{a}{m^{2}}b\mathcal{V}_{K}, \\ \mathcal{H}_{i} &= -\varepsilon^{0\alpha\beta} \left(a\sigma R_{i\alpha\beta} - a\Lambda_{0}\varepsilon_{ijk}b^{j}{}_{\alpha}b^{k}{}_{\beta} + \nabla_{\alpha}\lambda_{i\beta} \right), \\ \mathcal{K}_{i} &= -\varepsilon^{0\alpha\beta} \left(a\sigma T_{i\alpha\beta} + \frac{a}{m^{2}}\nabla_{\alpha}f_{i\beta} + \varepsilon_{ijk}b^{j}{}_{\alpha}\lambda^{k}{}_{\beta} \right), \\ \mathcal{R}_{i} &= -\frac{a}{2m^{2}}\varepsilon^{0\alpha\beta}R_{i\alpha\beta}, \quad \mathcal{T}_{i} = -\frac{1}{2}\varepsilon^{0\alpha\beta}T_{i\alpha\beta}. \end{split}$$

Extra gauge symmetries in BHT gravity

Introduction 0000 0	Lagrangian dynamics 000 0 0	Canonical analysis ○●○ ○ ○	Concluding remarks

Hamiltonian and constraints

Going over to the total Hamiltonian,

$$\mathcal{H}_{T} = \mathcal{H}_{c} + u^{i}{}_{\mu}\phi_{i}{}^{\mu} + v^{i}{}_{\mu}\Phi_{i}{}^{\mu} + w^{i}{}_{\mu}\rho_{i}{}^{\mu} + z^{i}{}_{\mu}P_{i}{}^{\mu},$$

we find that the consistency conditions of the primary constraints π_i^0 , Π_i^0 , p_i^0 and P_i^0 yield the secondary ones:

$$\hat{\mathcal{H}}_i := \mathcal{H}_i + \frac{a}{m^2} b \mathcal{T}_i^0 \approx 0, \quad \mathcal{K}_i \approx 0,$$

 $\hat{\mathcal{R}}_i := \mathcal{R}_i + \frac{a}{2m^2} b(f_i^0 - fh_i^0) \approx 0, \quad \mathcal{T}_i \approx 0.$

Tertiary constraints read:

$$\theta_{\mu\nu} := \mathbf{f}_{\mu\nu} - \mathbf{f}_{\nu\mu} \,, \quad \psi_{\mu\nu} := \lambda_{\mu\nu} - \lambda_{\nu\mu} \,,$$

while quartic are given by:

$$\chi := \lambda \approx \mathbf{0}, \quad \varphi := \sigma f + 3\Lambda_0 + \frac{1}{2m^2} \mathcal{V}_K \approx \mathbf{0}.$$

Extra gauge symmetries in BHT gravity

Introduction 0000 0	Lagrangian dynamics oco o o	Canonical analysis ○○● ○ ○	Concluding remarks

Hamiltonian and constraints

The consistency condition for the quartic constraint φ has the form:

$$\begin{split} \{\varphi, H_T\}_1^* &= \Omega^{\mu\nu} Z'_{\mu\nu} \approx 0 \,, \\ \Omega^{\mu\nu} &:= \sigma g^{\mu\nu} + \frac{1}{4m^2} \left(f^{\mu\nu} - f g^{\mu\nu} \right) \,, \end{split}$$

where $z_{0'}^{i} := z_{0}^{i} - f_{k}^{i} u_{0}^{k}$

- This relation determines the multiplier z'₀₀, provided the coefficient Ω⁰⁰ does not vanish.
- The total Hamiltonian can be expressed in terms of the first class constraints (up to an ignorable square of constraints) as follows:

$$\hat{\mathcal{H}}_{T} = b^{i}{}_{0}\bar{\mathcal{H}}_{i} + \omega^{i}{}_{0}\bar{\mathcal{K}}_{i} + u^{i}{}_{0}\pi_{i}{}^{0}'' + v^{i}{}_{0}\Pi_{i}{}^{0},$$

where $\pi_i^{0''} = \pi_i^0 + \lambda_{ji} p^{j0} + f_{ji} P^{j0}$.

Introduction 0000 0	Lagrangian dynamics 000 0 0	Canonical analysis	Concluding remarks

Classification of constraints

The complete classification of constraints in the reduced space *R*₁, defined by second class constraints (φ_i^α, Φ_i^α, p_i^α, P_i^α) is:

	First class	Second class
Primary	$\pi_i^{0''}, \Pi_i^{0}$	p_i^{0}, P_i^{0}
Secondary	$\overline{\mathcal{H}}_i, \overline{\mathcal{K}}_i$	$\mathcal{T}_i, \hat{\mathcal{R}}'_i$
Tertiary		$\theta_{0\beta}, \theta_{\alpha\beta}, \psi_{0\beta}, \psi_{\alpha\beta}$
Quartic		$\chi, arphi$

The number of independent dynamical degrees of freedom in R₁ is N* = 4 and the theory exhibits 2 local Lagrangian degree of freedom.

Introduction	Lagrangian dynamics	Canonical analysis	Concluding remarks
0000	000 0 0		

Canonical structure of the linearized theory at the critical point

At the critical point complete classification of constraints in R₁ is given by:

	First class	Second class
Primary	${\widetilde{\pi}_i}^{0''}, {\widetilde{\Pi}_i}^0, {\widetilde{P}}^{00}$	$ ilde{ m eta}_{i}{}^{0}, \widetilde{ m eta}^{lpha 0}$
Secondary	$\hat{\mathcal{H}}_{i}^{\prime},\mathcal{K}_{i},\hat{\mathcal{R}}^{00}$	$\mathcal{T}_i, \hat{\mathcal{R}}^{lpha\prime}$
Tertiary	$\psi_{lphaeta}$	$\theta_{0lpha}, \theta_{lphaeta}, \psi_{0lpha}$
Quartic		χ

where $\hat{\mathcal{H}}'_i = \hat{\mathcal{H}}_i - \Lambda_{\mathrm{eff}} \hat{\mathcal{R}}_i, \hat{\mathcal{R}}^{00} = \bar{h}_i^0 \hat{\mathcal{R}}^i - \bar{h}_i^0 \bar{\nabla}_{\beta} (\bar{b}^i_0 \widetilde{P}^{\beta 0}).$

We obtain that the number of physical modes in the phase space is N* = 2, and consequently, the BHT theory at the critical point exhibits one Lagrangian degree of freedom.

Introduction 0000 0	Lagrangian dynamics 000 0 0	Canonical analysis ○○○ ○ ●	Concluding remarks
		•	

Extra gauge symmetry

The presence of an extra primary FC constraint P⁰⁰ implies the existence of an extra gauge symmetry. Its canonical construction is simplifies in the reduced phase space R₂:

$${\cal R}_2: \qquad heta_{eta 0} \equiv ilde{f}_{eta 0} - ilde{f}_{0eta} = 0\,, \qquad \widetilde{{\cal P}}^{eta 0} = 0\,,$$

to eliminate the variables $\tilde{f}_{\beta 0}$ and $\tilde{P}^{\beta 0}$.

 Castellani's algorithm leads to the following canonical generator in R₂:

$$\begin{split} G_{E} &= -2\ddot{\epsilon}\widetilde{P}^{00} + \dot{\epsilon}\left[-2\hat{\mathcal{R}}^{0\prime} + 2(\bar{h}^{i0}\bar{\nabla}_{0}\bar{b}^{i}_{0})\widetilde{P}^{00} + \varepsilon_{ijk}\bar{h}^{i0}\bar{b}^{j}_{0}\widetilde{\Pi}^{k}_{0}\right] \\ &+ \epsilon\left[\varepsilon^{0\alpha\beta}\bar{b}^{i}_{\alpha}\tilde{\lambda}_{i\beta} + \tilde{\pi}_{0}^{\ 0} - \varepsilon_{ijk}\bar{\nabla}_{\alpha}(\bar{h}^{i\alpha}\bar{b}^{j}_{0}\widetilde{\Pi}^{k}_{\ 0}) + 2\bar{\nabla}_{\alpha}\hat{\mathcal{R}}^{\alpha\prime} \right. \\ &\left. -2\bar{\nabla}_{\alpha}(\bar{h}^{\alpha}_{i}\widetilde{P}^{00}\bar{\nabla}_{0}\bar{b}^{j}_{\ 0}) + \Lambda_{\mathrm{eff}}\bar{g}_{00}\widetilde{P}^{00}\right] \,. \end{split}$$

Introduction 0000 0	Lagrangian dynamics 000 0 0	Canonical analysis 000 0 0 0	Concluding remarks

- ► The canonical structure of the BHT gravity at the critical point $\Lambda_0/m^2 = -1$ does not remain the same after linearization.
- We are led to conclude that the canonical consistency of the BHT gravity, expressed by the stability of its canonical structure under linearization, is violated at the critical point Λ₀/m² = −1.
- ► It is interesting to examine whether the partially massless modes exist within R + T² + R² Poincaré gauge theory.
- Preliminary results for spin 0⁺ mode show that at the critical point theory is canonically consistent.