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1. General structure of the Poincar é gauge theory
(PG)

Poincaré group P (1, 3) = T (4)⊂×S(1, 3). The ‘gravitational’ potentials are

ϑα orthonormal coframe (weak gravity = 4 potentials)

Γαβ = −Γβα Lorentz connection (strong YM-gravity = 6 potentials)

By differentiation, we find the field strengths

T α = Dϑα = dϑα +

semi-dir. prod. str.z }| {
Γβ

α ∧ ϑβ torsion

Rαβ = dΓαβ − Γαγ ∧ Γγ
β

| {z }
Lorentz gr. non-Abelian

= −Rβα curvature

The material currents of energy-momentum and spin angular momentum
(Tα, Sαβ) are coupled to the potentials (ϑα, Γαβ), respectively. As compared
to GR, the additional source of gravity is the spin current Sαβ = −Sβα.
These 2 potentials span the geometry of spacetime: It is the Riemann-Cartan
spacetime U4. The corresponding first order Lagrangian gauge field theory is
called PG. It is a framework for gravitational gauge field theories.
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Lagrangian:

Ltotal = V (gαβ , ϑα , T α , Rαβ)+Lmatter(gαβ , ϑα , Ψ ,
Γ

D Ψ) .

Define the excitations (field momenta):

Hα = −
∂V

∂T α
, Hαβ = −

∂V

∂Rαβ
,

Field equations:

DHα−tα = Tα (δ/δϑα: 1st field equation of gravity) ,

DHαβ − sαβ = Sαβ (δ/δΓαβ: 2nd field equation of gravity) ,

δL

δΨ
= 0 (δ/δΨ: matter field equation)

(Einstein sector). Here energy-momentum and spin of the gauge fields are

tα := eα⌋V + (eα⌋T
β) ∧ Hβ + (eα⌋R

βγ) ∧ Hβγ ,

sαβ := −ϑ[α ∧ Hβ ].

Like in Maxwell and Yang-Mills, the gauge Lagrangian should be algebraic in
T α and Rαβ. Then we find 2nd order PDEs. Moreover, they should be
quadratic in order to induce quasi-linearity of the PDEs (⇒ wave type eqs.):
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2. Quadratic PG Lagrangian with even and odd
parity terms

VPG ∼
1

κ

 
a0R + Λ +

3X

I=1

a(I)
(I)T α ∧ ⋆(I)Tα

!
+

1

̺

6X

I=1

r(I)
(I)Rαβ ∧ ⋆(I)Rαβ

+
1

κ

 
b0X +

2,3X

1,1

σ(I,K)
(I)T α ∧ (K)Tα

!
+

1

̺

3,6;5,5X

1,1;2,4

µ(I,K)
(I)Rαβ ∧ (K)Rαβ .

Here X ∼ ǫijklR[ijkl] ∼
(3)Rαβ ∧ ϑα ∧ ϑβ . In Riemannian space, the whole

2nd line (the ‘shadow’ of the 1st line), with exception of µ(1, 1), vanishes.
(1)T → tensor (2)T → vector, ∼ V, (3)T → axial vector ∼ A
(1)R → 10 Weyl, (2)R → 9 Paircom, (3)R → 1 Pscalar X,
(4)R → 9 Ricsymf, (5)R → 6 Riccanti, (6)R → 1 Scalar R.

Recently investigated by us:

VBHN ∼
1

κ

`
Hojman et al. 1980z }| {
a0R + b0X +a2V ∧⋆V + a3A∧⋆A + σ2A∧⋆V

´

+
1

̺
(r6R ∧⋆R + r3X ∧⋆X + µ3R ∧⋆X)
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3. Einstein-Cartan theory (EC)

Simplest Lagrangian

VEC ∼
1

κ
ϑi

αϑj
β Rij

αβ(Γk
γδ) ∼

1

κ
R

Einstein-Cartan (EC) theory: GR plus an add. spin contact interaction,

Ric −
1

2
tr(Ric) ∼ κ × T ∼ κ × energy-momentum ,

Tor + 2 tr(Tor) ∼ κ × S ∼ κ × spin angular momentum .

Here Ricij := Rkij
k, R := Rici

i, and κ is Einstein’s gravitational constant
8πG/c4. If spin S → 0, then EC-theory → GR, and RC-spacetime →
Riemannian spacetime. Thus, GR is included.

With S 6= 0, modified source of Einstein’s equation: ρ → ρ + κS2 ⇒ at
sufficiently high densities κS2 ∼ ρ ⇒

ρcrit ∼ m/
“
λComptonℓ2Planck

”
(result of spin-spin contact interaction) ,

more than 1052 g/cm3 or 1024 K for the nucleon, ℓcrit ∼ 10−26 cm. Spin
cosmology, spin-driven inflation? For parallel Dirac spins, the contact
interaction is repulsive (O’Connell). The EC-theory is a viable gravitational
theory. Contact interactions in particle physics were searched for by
Ellerbrock, Ph.D. thesis DESY 2004. Nothing found so far. But for EC-theory
these experiments are not sensitive enough.
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4. Teleparallel equivalent GR || of GR

Belongs to the class of translational gauge theories:

V‖ =
1

κ
VT2 + Rα

β ∧ λα
β (λα

β = Lagrange multiplier) ,

VT2 := −
1

2
T α ∧ ⋆

“
− (1)Tα| {z }

tensor

+2 (2)Tα| {z }
vector

+
1

2
(3)Tα| {z }

axial vector

”
.

Viable set! Yields local Lorentz invariance ⇒ Einstein’s GR.
GR|| in gauge Γ

∗
= 0, Weitzenböck spacetime, field equation is Maxwell like

(Cki
α ∼ ∂[kϑi]

α + · · · ):

Dk Cki
α + nonlin. terms ∼ κ × Tα

i

� ϑi
α + nonlin. terms ∼ κ × Tα

i (in Hilbert gauge)

Compare Einstein’s equation (gij = gji):

� gij + nonlin. terms ∼ κ × tij (in Hilbert gauge)

For scalar and for Maxwell matter, that is, for Tij = tij , it can be shown that

GR|| and GR are equivalent. This suggests already that the answer to the

title question should be affirmative.
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5. Abelian and non-Abelian gauge field ths. comp.

With the excitatation H = H(D,H) and the field strength F = F (E, B):

Maxwell: dH = J , dF = 0 , H =

r
ε0

µ0

⋆F , dJ = 0 .

Yang-Mills:
A

D H = I ,
A

D F = 0 , H = α0
⋆F ,

A

D I = 0 .

dH + A ∧ H = I , dF + A ∧ F = 0 , dI − A ∧ I = 0 ,
A

I := −A ∧ H, with Ǐ := I+
A

I and d Ǐ ∼= 0 .

Poincaré:
Γ

D Hα − tα = Tα ,
Γ

D T α = Rβ
α ∧ ϑβ ,

Hα = Hα(T γ , Rγδ) ,
Γ

D Tα = (eαyT β) ∧ Tβ + (eαyRβγ) ∧ Sβγ ;

Γ

D Hαβ − sαβ = Sαβ ,
Γ

D Rαβ = 0 ,

Hαβ = Hαβ(T γ , Rγδ) ,
Γ

D Sαβ − ϑ[α ∧ Tβ] = 0 .

Translational and rotational gauge currents induced by the universality of
gravity. The gauge potentials ϑα and Γαβ carry tensorial charges tα, sαβ.

The Yang-Mills potential A carries also an own isospin current, namely
A

I, but
it is not tensorial.
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Schematically, it looks as follows:

Maxwell:

d [U(1) field strength] ∼ U(1)-current .

Yang–Mills:

A

D [SU(2) field strength] ∼ SU(2)-current .

Poincaré:

Γ

D [transl. field strength] − transl. gauge current ∼ transl. current ,
Γ

D [rotat. field strength] − rotat. gauge current ∼ rotat. current .

Einstein-Cartan (as degenerate PG):

rotat. field strength ∼ transl. current ,

transl. field strength ∼ rotat. current .

lhs-first(∂Γ, Γ, ϑ) ∼ T ,

lhs-second(∂ϑ, ϑ, Γ) ∼ S .
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6. EC-theory and the Freud superpotential Fα

EC is in many respects degenerate, see last slide. A contact interaction must
become of finite, if very small range ⇒ massive Lorentz gauge bosons,
compare Fermi’s weak interaction theory and the W and Z.
Field equations of EC are algebraic in Rαβ and T α, respectively. In spite of
this, we want to try to put them in a form reminiscent of Yang-Mills type field
equations (κ = 1):

Gα|{z}
Einstein 3-form

:= 1

2
ηαβγ ∧ Rβγ = Tα =⇒ dFα − t′α = Tα ,

Pαβ|{z}
Palatini 3-form

:= 1

2
ηαβγ ∧ T γ = Sαβ =⇒ d( 1

2
ηαβ) − s′αβ = Sαβ .

The η-basis is defined in the conventional way: If we take the interior product
y of an arbitrary frame eα with the metric volume element 4-form η, then we
find a 3-form ηα; if we contract again, we find a 2-form ηαβ , etc.:

ηα := eαyη = 1

6
ηαβγδ ϑβ ∧ ϑγ ∧ ϑδ ,

ηαβ := eβyηα = 1

2
ηαβγδ ϑγ ∧ ϑδ ,

ηαβγ := eγyηαβ = ηαβγδ ϑδ ,

ηαβγδ = eδyηαβγ = eδyeγyeβyeαyη .
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The coframe ϑβ is dual to the frame eα, that is, eαyϑβ = δβ
α. We need also

the exterior covariant derivatives of the eta-forms:

Dηα = T δ ∧ ηαδ ,

Dηαβ = T δ ∧ ηαβδ ,

Dηαβγ = T δ ∧ ηαβγδ ,

Dηαβγδ = 0 .

If one desires to introduce a superpotential à la Freud (1939), then one has to
substitute Rβγ into the 1st field eq. and one of the above formlas into the 2nd
field eq.:

1

2
ηαβγ ∧

“
dΓβγ − Γβδ ∧ Γδ

γ
”

= Tα ,

1

2
Dηαβ = d( 1

2
ηαβ) + Γ[α

γ ∧ ηβ]γ = Sαβ .

We partially integrate the first term and find immediately,

d (−
1

2
ηαβγ ∧ Γβγ

| {z }
Fα:=

) +
1

2
(dηαβγ) ∧ Γβγ −

1

2
ηαβγ ∧ Γβδ ∧ Γδ

γ = Tα .

12



We define the Freud superpotential 2-form Fα and the 3-form t′α as

Fα := − 1

2
ηαβγ ∧ Γβγ ,

t′α := − 1

2
(dηαβγ) ∧ Γβγ + 1

2
ηαβγ ∧ Γβδ ∧ Γδ

γ .

We recall Dηαβγ = T µ ∧ ηαβγµ. As a consequence

dηαβγ = 3Γ[α
δ ∧ ηβγ]δ+T δ ∧ ηαβγδ .

After some algebra we find eventually

t′α = ηβγ[α ∧ Γδ]
β ∧ Γδγ − 1

2
ηαβγδ Γβγ ∧ T δ .

Then we can rewrite the 1st and the 2nd EC field equations simply as

dFα − t′α = Tα , d( 1

2
ηαβ) + Γ[α

γ ∧ ηβ]γ = Sαβ .

This is the quasi-Yang-Mills or quasi-PG form of the field equations of the
EC-theory (Why only quasi? Do you know?...) As before, we define the
energy-momentum and spin complexes

Ťα := t′α + Tα , Šαβ := −Γ[α
γ ∧ ηβ]γ + Sαβ .
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Consquently, we find energy-momentum and angular momentum laws

dFα = Ťα , d( 1

2
ηαβ) = Šα with d Ťα = 0 , d Šαβ = 0 .

The plan of my seminar is to concentrate on GR. We could go on also in the
EC context, but most of you are probably mainly interested in GR. For now on
we put the matter spin to zero: Sαβ = 0!. Thus, torsion T α = 0 in my future
considerations.
The appearance of Fα is the same as before, but the connection is now a
Riemann/Levi-Civita connection eΓαβ . Hence dFα − t′α = Tα with

Fα = − 1

2
ηαβγ ∧ eΓβγ = 1

2
Fikα dxi ∧ dxk , t′α = ηβγ[α ∧ eΓδ]

β ∧ eΓδγ .

Freud found his superpotential1 in 1939 as the affine tensor density

A
in

k = 1

2

δi
k δn

k δµ
k

giρ gnρ gµρ

Γi
ρµ Γn

ρµ Γµ
ρµ

= −A
ni

k .

Fikα = −Fkiα and Ain
k are, apart from conventions, the same quantities.

1Ph. Freud, On the expressions of total energy and total momentum of a
material system in general relativity theory (in German), Annals of
Mathematics 40, 417–419 (1939).
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7. Transform the Freud superpotential Fα into ⋆
C

α

We want to show that the Einstein equation is a translational gauge field
equation. We eliminate now the connetion in terms of derivatives of the
coframe and the metric. We recall the object of anholonom(it)y Cα := dϑα:

eΓαβ :=
1

2
dgαβ + (e[αydgβ]γ)ϑγ + e[αyCβ] −

1

2
(eαyeβyCγ)ϑγ .

We used orthonormal frames; then, the first two terms on the rhs vanish.
Accordingly, the Freud’s superpotential becomes

Fα = − 1

2
ηα

βγ ∧
h
eβyCγ − 1

2
(eβyeγyCδ)ϑ

δ
i

Taking this is consideration, the Einstein equation dFα − t′α = Tα is a 2nd
order PDE in the ϑα = ϑi

αdxi. Since ϑα is the translation potential, we found
a Yang-Mills type equation for the translational potential. And this is what
Einstein’s equation is.

15



A Yang-Mills type equation is dH − t′ = T, with H ∼ ⋆F . Our translation field
strength here is Cα = dϑα = 1

2
Cik

α dxi ∧ dxk. This 24 component quantity
can be decomposed into 3 irreducible pieces:

Cα = (1)Cα + (2)Cα + (3)Cα

with 16 + 4 + 4 components, respectively. In SU(2) Yang-Mills the field
strength is irreducible!
Purely gemetrical manipulation yield, after some heavy algebra, the formula
(the overall sign needs to be rechecked!):

Fα := ⋆(−(1)Cα + 2 (2)Cα + 1

2

(3)Cα).

Our end result is then the Einstein equation written in coframes:

d ⋆
“
−(1)Cα + 2 (2)Cα + 1

2

(3)Cα

”
− t′α = Tα .

All the 2nd derivatives of the coframe are contained within the parentheses
( ). It can be shown that t′α corresponds to the tranlational part of the PG
energy gauge current tα defined on slide # 4. All the derivations leading to
our end result have been exact; there was no approximation involved.
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8. Discussion

◮ Yes, GR is a translational gauge theory in disguise.
◮ Questions?
◮ Thank you for your attention and your patience!
◮ Milutin, all the best to you and your family and remain

healthy and active in 3d and 4d!

Soli Deo Gloria
—————
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