Introduction to Noncommutative Geometry

1. General introduction and motivation
2. Models with finite-dimensional algebras, with and without commutative limits
3. Introduction to differential calculi
4. Introduction to connections
5. Introduction to metrics and compatible linear connections
6. Models with infinite-dimensional algebras
7. General introduction and motivation

History:
Heisenberg et al. and the lattice (1930's)

Snyder and 'fuzz' (1947); Lorentz invariance
von Neumann and 'noncommutative geometry' (1950's)

Connes and 'noncommutative differential geometry' (1980's)

The simplest expression of Snyder's idea:

Consider S^{2} with an action of SO_{3}; choose a lattice: the north and south poles; this breakes SO_{3} invariance

The lattice algebra of functions $=\mathbb{C} \times \mathbb{C}$; extend to $M_{2}(\mathbb{C})$ to recover the invariance; the two points become two 'cells'; an 'observable' is an hermitian 2×2 matrix, with two real eigenvalues, its values on the two 'cells'

Similar to replacing a classical spin which can take two values by a quantum spin of total spin $1 / 2$; only the latter is invariant under SO_{3}

General s with $n=2 s+1$; replace M_{2} by M_{n}; there are n cells of area $2 \pi \hbar$ with

$$
n \simeq \frac{\operatorname{Vol}\left(S^{2}\right)}{2 \pi k}, \quad[k]=(\text { length })^{2}
$$

Mathematics:

Formulate as much as possible the geometry of a manifold V in terms of an algebra $\mathcal{C}(V)$ of complex-valued functions (smooth, continuous, measurable, all functions) (Koszul 1960's)

Replace the algebra $\mathcal{C}(V) \mapsto \mathcal{A}$ by a noncommutative algebra \mathcal{A} (associative, with unit and with an involution $*$)

Since V as a manifold of dimension m can be embedded in \mathbb{R}^{n} for some $n>m$, choose \mathcal{A} defined in terms of n generators and $n-m$ relations

Represent the algebra \mathcal{A} by an algebra of operators on a Hilbert space

Physics:
Practical physics: introduce a cut-off Λ; points 'fuzzy' to order Λ^{-1}
'Fundamental' Physics: replace points by 'Planck cells'; no UV divergences

Solid-state analogy: Coordinates as order parameters; course-graining

Related things: random lattices, qantum nets, twistors, Sakarov's induced gravity, Wheeler's graviton as phonon et caetera

Unrelated things: Schrödinger's position operators

$$
\mathbf{q}(t)=\mathbf{x}(t)+m^{-2} \mathbf{S} \times \mathbf{p}(t)
$$

to explain the Zitterbewegung of an electron

Comparison with quantum mechanics: particle in a plane: $\left(x^{1}, x^{2}, p_{1}, p_{2}\right)$
a) Classical mechanics: 4 commuting operators
b) Quantum mechanics: $\left[x^{i}, p_{j}\right]=\hbar \delta_{j}^{i}$;
'Bohr cells' of area $2 \pi \hbar$
c) Magnetic field B normal to the plane: $\left[p_{1}, p_{2}\right]=i \hbar e B$; 'Landau cells' of area $\hbar e B$; IR cut-off: $p^{2} \gtrsim \hbar e B$
d) Gaussian curvature $K: p^{2} \gtrsim \hbar^{2} K$
e) 'Quantized' coordinates: $x^{i} \mapsto q^{i}$; $\left[q^{1}, q^{2}\right]=i k q^{12} ;$ 'Planck cells' of area $2 \pi k$; UV cut-off: $p^{2} \lesssim \hbar^{2} / \hbar$

Situations d) and e) together imply:

$$
I=\int \frac{d p_{1} d p_{2}}{p_{1}^{2}+p_{2}^{2}} \sim \log (\hbar K)
$$

Let ϕ_{r} be eigenmodes of an operator Δ,
$\Delta \phi_{r}=\lambda_{r} \phi_{r}$, which span a Hilbert space $\mathcal{H} \subset \mathcal{A}$:

$$
\operatorname{Tr}\left(\phi_{r}^{*} \phi_{s}\right)=\delta_{r s}, \quad \phi=\sum_{r} \phi_{r} \operatorname{Tr}\left(\phi_{r}^{*} \phi\right)
$$

The 2-point function $G \in \mathcal{H} \otimes \mathcal{H}$:

$$
G=\sum_{r} \lambda_{r}^{-1} \phi_{r} \otimes \phi_{r}^{*}
$$

Suppose $\mathcal{A}=\mathcal{A}\left(q^{1}, q^{2}\right)$ and rewrite

$$
q^{\mu} \otimes 1=\bar{q}^{\mu}+\delta q^{\mu}, \quad 1 \otimes q^{\mu}=\bar{q}^{\mu}-\delta q^{\mu}
$$

Then if q^{12} is in the center of the algebra

$$
\left[\bar{q}^{\mu}, \delta q^{\nu}\right]=0, \quad\left[\bar{q}^{1}, \bar{q}^{2}\right]=\left[\delta q^{1}, \delta q^{2}\right]=\frac{1}{2} i k q^{12}
$$

There can be no state $|0\rangle$ (on the diagonal) with

$$
\delta q^{1}|0\rangle=0, \quad \delta q^{2}|0\rangle=0
$$

Complication: q^{12} need not lie in the center

Conjecture to determine q^{12} :
it determines (in Wheeler's language) the 'lattice' spacings away from (flat space) equilibrium; it is in 1-1 correspondence with the classical 'gravitational' field

As examples we shall find that (after addition of a differential calculus) if
a) $q^{12}=q^{3}, \sum\left(q^{i}\right)^{2}=r^{2}$: the surface is a sphere
b) $q^{12}=1$: the surface is flat
c) $k q^{12}=-2 h q^{2}$: the surface is a pseudosphere

In phase space the Jacobi identities imply:

$$
\left[q^{i}, p_{j}\right]=i \hbar \delta_{j}^{i}+i \hbar A_{j}^{i}
$$

A noncommutative vision of gravity:

The euclidean classical action:

$$
S[g]=\Lambda_{c} \operatorname{Vol}(V)[g]+\mu_{P}^{2} \int_{V} R+\cdots
$$

The euclidean quantum action:
$\left.\Gamma[g]=S[g]+\frac{1}{2} \hbar \operatorname{Tr} \log \Delta[g] \simeq z_{0} \mu_{P}^{4} \operatorname{Vol}(V)[g]\right)+$

$$
z_{1} \mu_{P}^{2} \int_{V} R+z_{2}\left(\log \frac{\mu_{P}}{\mu}\right) S_{2}[g]+0\left(\hbar^{2}\right)+\cdots
$$

$\Delta[g]:$ any mode in a gravitational field g
Sakharov's idea: there is no classical action
Wheeler's idea: 'Gravitation is to particle physics as elasticity is to chemical physics: merely a statistical measure of residual energies.'

Noncommutative version: Gravitation is a
measure of a variation of the spectral distribution of some operator away from an 'equilibrium' value

A typical model:

Replace (Minkowski) coordinates x^{μ} by generators q^{μ} of a noncommutative algebra \mathcal{A}_{\hbar} with

$$
\left[q^{\mu}, q^{\nu}\right]=i \hbar q^{\mu \nu}, \quad \hbar \simeq \mu_{P}^{-2}=G \hbar
$$

Structure of the algebra: $\left[q^{\lambda}, q^{\mu \nu}\right]$ et cœtera
'Heisenberg' uncertainty relations: $\Lambda^{2} \hbar \lesssim 1$
Fuzzy space-time: cells of volume $\simeq(2 \pi \hbar)^{2}$
In the limit $\mu_{P} \rightarrow \infty: q^{\mu} \rightarrow x^{\mu}$ or perhaps:
Singular 'renormalization constant': $q^{\mu} \rightarrow z x^{\mu}$
Representation: q^{μ} become unbounded hermitian operators on some Hilbert space

The whole idea is contained in the diagram

\mathcal{A}_{k}	\Longleftarrow	$\Omega^{*}\left(\mathcal{A}_{k}\right)$
\Downarrow		\Uparrow
Cut-off		Gravity

2. Finite-dimensional models

Consider the decomposition $\mathbb{C}^{n}=\mathbb{C}^{m} \oplus \mathbb{C}^{n-m}$
Then

$$
M_{n}=\left(\begin{array}{cc}
M_{m} & M_{n}^{-\prime} \\
M_{n}^{-\prime \prime} & M_{n-m}
\end{array}\right)=M_{n}^{+} \oplus M_{n}^{-}
$$

with $M_{n}^{+}=M_{m} \times M_{n-m}, \quad M_{n}^{-}=M_{n}^{-\prime} \cup M_{n}^{-\prime \prime}$
Examples: $n=2, m=1, \quad n=3, m=1$

$$
M_{n}=M_{n}\left(x^{a}\right)=
$$

$$
\begin{array}{r}
\left\{\left(x^{a}\right) \mid x^{a}=k r^{-1} J^{a},\left[J_{a}, J_{b}\right]=i \epsilon_{a b c} J^{c}\right. \\
\left.J_{a} J^{a}=\left(n^{2}-1\right) / 4=r^{4} / \hbar^{2}\right\}
\end{array}
$$

From Casimir relation: $g_{a b} x^{a} x^{b}=r^{2}, \quad n \simeq \frac{4 \pi r^{2}}{2 \pi k}$

$$
\begin{aligned}
& M_{n}=\mathcal{A}_{l / n}=M_{n}(u, v)= \\
& \left\{(u, v) \mid u^{n}=v^{n}=1, u v=q v u,\right. \\
& \left.q=e^{2 \pi i \alpha}, \alpha=l / n\right\}
\end{aligned}
$$

Representation of $\mathcal{A}_{1 / n}:\left\{|j\rangle_{1}\right\},\left\{|k\rangle_{2}\right\} \in \mathbb{C}^{n}$

$$
\begin{array}{ll}
u|j\rangle_{1}=q^{j}|j\rangle_{1}, & v|j\rangle_{1}=|j+1\rangle_{1}, \\
u|k\rangle_{2}=|k-1\rangle_{2}, & v|k\rangle_{2}=q^{k}|k\rangle_{2}
\end{array}
$$

'Fourier' transformation:

$$
|j\rangle_{1}=\frac{1}{\sqrt{n}} \sum_{l=0}^{n-1} q^{+j k}|k\rangle_{2}, \quad|k\rangle_{2}=\frac{1}{\sqrt{n}} \sum_{j=0}^{n-1} q^{-j k}|j\rangle_{1}
$$

One deduces immediately the relations

$$
u v=q v u, \quad u^{n}=1, \quad v^{n}=1, \quad q^{n}=1
$$

Define hermitian matrices x and y by

$$
x|j\rangle_{1}=\frac{k}{r} j|j\rangle_{1}, \quad y|k\rangle_{2}=\frac{k}{r} k|k\rangle_{2}
$$

One finds that

$$
u=e^{i x / r}, v=e^{i y / r}, \quad q=e^{i \hbar / r^{2}}, \quad n=\frac{(2 \pi r)^{2}}{2 \pi \hbar}
$$

The algebra M_{n} has derivations
$\operatorname{Der}\left(M_{n}\right)=$

$$
\left\{X: M_{n} \rightarrow M_{n} \mid X(f g)=X f g+f X g\right\}
$$

For example: $\quad e_{1}=\frac{1}{i k} \operatorname{ad} y, \quad e_{2}=-\frac{1}{i k} \operatorname{ad} x$

$$
\begin{array}{ll}
e_{1} u=i r^{-1} u\left(1-n P_{2}\right), & e_{1} v=0 \\
e_{2} u=0, & e_{2} v=i r^{-1} v\left(1-n P_{1}\right)
\end{array}
$$

with $P_{1}=|0\rangle_{2}\langle 0|, \quad P_{2}=|n-1\rangle_{1}\langle n-1|$

One finds $\quad e_{1} u^{n}=0, \quad e_{2} v^{n}=0, \quad\left[e_{1}, e_{2}\right]=0$

Recall 2-torus with $\tilde{u}=e^{i \tilde{x} / r}, \tilde{v}=e^{i \tilde{y} / r}$ and $\tilde{e}_{1} f=\partial_{\tilde{x}} f, e_{2} f=\partial_{\tilde{y}} f:$

$$
\begin{array}{ll}
\tilde{e}_{1} \tilde{u}=i r^{-1} \tilde{u}, & \tilde{e}_{1} \tilde{v}=0 \\
\tilde{e}_{2} \tilde{u}=0, & \tilde{e}_{2} \tilde{v}=i r^{-1} \tilde{v}
\end{array}
$$

With lattice: $\tilde{u}^{n}=1, \tilde{v}^{n}=1$ but no derivations

3. Differential calculi

Consider associative \mathcal{A} and a graded algebra

$$
\Omega^{*}(\mathcal{A})=\bigoplus_{i \geq 0} \Omega^{i}(\mathcal{A}), \quad \Omega^{0}(\mathcal{A})=\mathcal{A}
$$

direct sum of a family of \mathcal{A}-bimodules; if the grading is a \mathbb{Z}_{2}-grading we write $\Omega^{+}(\mathcal{A})=\mathcal{A}$

A differential d is a graded derivation of $\Omega^{*}(\mathcal{A})$ with $d^{2}=0$; if $\alpha \in \Omega^{i}(\mathcal{A})$ and $\beta \in \Omega^{j}(\mathcal{A})$ then $\alpha \beta \in \Omega^{i+j}(\mathcal{A})$ and $d(\alpha \beta) \in \Omega^{i+j+1}(\mathcal{A})$ with

$$
d(\alpha \beta)=d \alpha \beta+(-1)^{i} \alpha d \beta
$$

Differential algebra $=$ a graded algebra with d

We say $\Omega^{*}(\mathcal{A})$ is a differential calculus over \mathcal{A}
Universal calculus: $\Omega_{u}^{*}(\mathcal{A})$
There exists a construction uniquely defined by the bimodule $\Omega^{1}(\mathcal{A})$

Define the map $\mathcal{A} \xrightarrow{d_{u}} \mathcal{A} \otimes \mathcal{A}$ by

$$
d_{u} f=1 \otimes f-f \otimes 1
$$

Define $\Omega_{u}^{1}(\mathcal{A}) \subset \mathcal{A} \otimes \mathcal{A}$ image of d_{u}; for $\Omega^{1}(\mathcal{A})$
another bimodule of 1-forms define

$$
\Omega_{u}^{1}(\mathcal{A}) \xrightarrow{\phi_{1}} \Omega^{1}(\mathcal{A})
$$

by

$$
\phi_{1}\left(d_{u} f\right)=d f
$$

Because $d 1=0$ the map is well defined; we have

$$
\begin{array}{ccc}
\mathcal{A} & \xrightarrow{d_{u}} & \Omega_{u}^{1}(\mathcal{A}) \\
\| & & \phi_{1} \downarrow \\
\mathcal{A} & \xrightarrow{d} & \Omega^{1}(\mathcal{A})
\end{array}
$$

We can write $\Omega^{1}(\mathcal{A})=\Omega_{u}^{1}(\mathcal{A}) / \operatorname{Ker} \phi_{1}$
Every bimodule of 1-forms can be so written

Product: $\quad \Omega^{1}(\mathcal{A}) \otimes_{\mathcal{A}} \Omega^{1}(\mathcal{A}) \xrightarrow{\pi} \Omega^{2}(\mathcal{A})$

Example: let $\mathcal{A}=\mathcal{C}(V)$ and $\Omega^{1}(\mathcal{A}) \equiv \Omega^{1}(V)$
If $f \in \mathcal{A}$ then $d_{u} f$ is the function of 2 variables

$$
d_{u} f(x, y)=f(y)-f(x)
$$

The de Rham 1-form: $\quad d f=\partial_{\lambda} f d x^{\lambda}$
Expand the function $f(y)$ about the point x :

$$
f(y)=f(x)+\left(y^{\lambda}-x^{\lambda}\right) \partial_{\lambda} f+\cdots
$$

The map ϕ_{1} is given by

$$
\phi_{1}\left(y^{\lambda}-x^{\lambda}\right)=d x^{\lambda}
$$

It annihilates $f(x, y) \in \Omega_{u}^{1}(\mathcal{A}) 2$ nd order in $x-y$
One such form is $f d_{u} g-d_{u} g f$:
$\left(f d_{u} g-d_{u} g f\right)(x, y)=-(f(y)-f(x))(g(y)-g(x))$
It does not vanish in $\Omega_{u}^{1}(\mathcal{A})$ but its image in
$\Omega^{1}(\mathcal{A})$ under ϕ_{1} is equal to zero

The Dirac operator $\not \mathbb{D} \psi=i \gamma^{\alpha} D_{\alpha} \psi, \quad \psi \in \mathcal{H}$

$$
\begin{array}{ll}
\not D=\left(\begin{array}{cc}
0 & D^{-} \\
D^{+} & 0
\end{array}\right), & \mathcal{H}=\mathcal{H}^{+} \oplus \mathcal{H}^{-} \\
\not D \psi=D^{+} \psi^{+}+D^{-} \psi^{-}, & D^{ \pm} \psi^{ \pm} \in \mathcal{H}^{\mp}
\end{array}
$$

Moving frame e_{α} with $\theta^{\alpha}\left(e_{\beta}\right)=\delta_{\beta}^{\alpha}$:

$$
\not D(f \psi)=\left(i e_{\alpha} f\right) \gamma^{\alpha} \psi+f \not D \psi
$$

and therefore

$$
e_{\alpha} f \gamma^{\alpha}=-i[D, f]
$$

Map $\gamma^{\alpha} \mapsto \theta^{\alpha}$; write

$$
\hat{d} f=e_{\alpha} f \theta^{\alpha}=-i[D, f]
$$

If the commutator is taken to be graded we have

$$
\hat{d}^{2} f=-\left[\not D^{2}, f\right], \quad \hat{d}^{2} \neq 0
$$

The set $(\mathcal{A}, \mathcal{H}, \not D)$ is called a spectral triple

Example: write $\mathbb{C}^{2}=\mathbb{C}^{1} \oplus \mathbb{C}^{1}$ and decompose

$$
M_{2}=M_{2}^{+} \oplus M_{2}^{-}
$$

The commutative algebra M_{2}^{+}is the algebra of functions on 2 points

Graded derivation $\hat{d} \alpha$ of $\alpha \in M_{n}$:

$$
\hat{d} \alpha=-[\eta, \alpha], \quad \eta \in M_{n}^{-}
$$

The bracket is graded and η is antihermitian
We find $\quad \hat{d} \eta=-2 \eta^{2}$ and $\hat{d}^{2} \alpha=\left[\eta^{2}, \alpha\right]$
Set $\quad \eta^{2}=-1: \quad \hat{d} \equiv d, \quad d^{2}=0 ;$
$\Omega_{\eta}^{*}=M_{2}$ is a differential calculus over M_{2}^{+}
Since for all $p: \quad \Omega_{\eta}^{2 p}=M_{2}^{+}, \quad \Omega_{\eta}^{2 p+1}=M_{2}^{-}$ we can identify

$$
\Omega_{\eta}^{*}=\Omega_{\eta}^{+} \oplus \Omega_{\eta}^{-}, \quad \Omega_{\eta}^{ \pm}=M_{n}^{ \pm}
$$

Notice that $d \eta+\eta^{2}=1$
Spectral triple: $\quad\left(M_{2}^{+}, \mathbb{C}^{2}, i \eta\right)$

Example: write $\mathbb{C}^{3}=\mathbb{C}^{2} \oplus \mathbb{C}^{1}$ and decompose

$$
M_{3}=M_{3}^{+} \oplus M_{3}^{-}
$$

The algebra $M_{3}^{+}=M_{2} \times M_{1} \sim$ functions on 2 points with an extra structure on one

Graded derivation $\hat{d} \alpha=-[\eta, \alpha]$ of $\alpha \in M_{n}$ with

$$
\eta=\left(\begin{array}{ccc}
0 & 0 & a_{1} \\
0 & 0 & a_{2} \\
-a_{1}^{*} & -a_{2}^{*} & 0
\end{array}\right) \in M_{n}^{-}
$$

We have $\quad \Omega_{\eta}^{0}=M_{3}^{+}, \quad \Omega_{\eta}^{1}=M_{3}^{-}$
It is not possible to have $\hat{d}^{2}=0$; define

$$
\Omega_{\eta}^{2}=M_{3}^{+} / \operatorname{Im} \hat{d}^{2}=M_{1}, \quad \Omega_{\eta}^{p}=0, p \geq 3
$$

Ω_{η}^{*} is a differential calculus over M_{3}^{+}

Notice that again $d \eta+\eta^{2}=1$
Spectral triple: $\quad\left(M_{3}^{+}, \mathbb{C}^{3}, i \eta\right)$

Example: M_{n} with basis λ_{a} :

$$
\lambda_{a} \lambda_{b}=\frac{1}{2} C^{c}{ }_{a b} \lambda_{c}+\frac{1}{2} D^{c}{ }_{a b} \lambda_{c}-\frac{1}{n} g_{a b}
$$

Killing metric: $g_{a b}$; structure constants: $C^{c}{ }_{a b}$

Contruct $\Omega^{*}\left(M_{n}\right)$ with generators θ^{a} and relations

$$
f \theta^{b}=\theta^{b} f, \quad \theta^{a} \theta^{b}=-\theta^{b} \theta^{a}
$$

and a differential defined by

$$
d \lambda^{a}=C^{a}{ }_{b c} \lambda^{b} \theta^{c}, \quad d \theta^{a}=-\frac{1}{2} C^{a}{ }_{b c} \theta^{b} \theta^{c}
$$

Special 1-form: $\quad \theta=-\lambda_{a} \theta^{a}=-\frac{1}{n} \lambda_{a} d \lambda^{a}$

From the definitions $d f=-[\theta, f]$

Notice that $d \theta+\theta^{2}=0$

Spectral triple: $\quad\left(M_{n}, \mathbb{C}^{n}, i \theta\right)$
4. Yang-Mills connections

Connection \equiv covariant derivative
Left connection (Yang-Mills) on left \mathcal{A}-module \mathcal{H} :

$$
\mathcal{H} \xrightarrow{D} \Omega^{1}(\mathcal{A}) \otimes_{\mathcal{A}} \mathcal{H}
$$

with a left Leibniz rule

$$
D(f \psi)=d f \otimes \psi+f D \psi, \quad f \in \mathcal{A}, \quad \psi \in \mathcal{H}
$$

Extension: $\Omega^{*}(\mathcal{A}) \otimes_{\mathcal{A}} \mathcal{H} \xrightarrow{D} \Omega^{*}(\mathcal{A}) \otimes_{\mathcal{A}} \mathcal{H}$ by
$D(\alpha \otimes \psi)=d \alpha \otimes \psi+(-1)^{n} \alpha \otimes D \psi, \quad \alpha \in \Omega^{n}(\mathcal{A})$
We shall drop the ' \otimes ' symbol
In particular one verifies that

$$
D^{2}(f \psi)=f D^{2} \psi
$$

Define $\operatorname{Curv}(\psi)=D^{2} \psi$

Example with differential calculus Ω_{η}^{*} over M_{3}^{+} and with \mathcal{H} the bimodule M_{3}^{+}:

Covariant derivative: $\quad D_{(0)} \psi=-\eta \psi$
In fact: $\quad D_{(0)}(f \psi)=-\eta f \psi=-f \eta \psi+d f \psi$
General case: $\quad D \psi=-\eta \psi-\psi \phi$

One can write $D \psi=d \psi+\omega \psi$ in terms of a 'connection form' ω which transforms as

$$
\omega^{\prime}=g^{-1} \omega g+g^{-1} d g, \quad g \in U_{2} \times U_{1}
$$

In particular: $\eta^{\prime}=\eta$; therefore

$$
\omega=\eta+\phi, \quad \phi^{\prime}=g^{-1} \phi g
$$

Curvature: $\quad \Omega=d \omega+\omega^{2}=1+\phi^{2}=1-|\phi|^{2}$

Action: $V(\phi)=\frac{1}{4} \operatorname{Tr}\left(1-|\phi|^{2}\right)^{2}$

The electromagnetic action on the 'space' M_{3}^{+}

Example with differential calculus $\Omega^{*}\left(M_{n}\right)$ over M_{n} and with \mathcal{H} the bimodule M_{n} :

Covariant derivative: $\quad D_{(0)} \psi=-\theta \psi$
General case: $\quad D \psi=-\theta \psi-\psi \phi$

In terms of a 'connection form'

$$
\omega^{\prime}=g^{-1} \omega g+g^{-1} d g, \quad g \in U_{n}
$$

In particular: $\theta^{\prime}=\theta$; therefore

$$
\omega=\theta+\phi, \quad \phi^{\prime}=g^{-1} \phi g
$$

Curvature: $\quad \Omega=d \omega+\omega^{2}=\frac{1}{2} \Omega_{a b} \theta^{a} \theta^{b}$
where $\Omega_{a b}=\left[\phi_{a}, \phi_{b}\right]-C^{c}{ }_{a b} \phi_{c}$
$C^{c}{ }_{a b}$ is a 'Christoffel symbol'

Action: $V(\phi)=\frac{1}{4} \operatorname{Tr}\left(\Omega_{a b} \Omega^{a b}\right)$

The electromagnetic action on the 'space' M_{n}

5. Metrics and linear connections

Let \mathcal{M} an \mathcal{A}-bimodule and $\Omega^{*}(\mathcal{A})$ a differential calculus; covariant derivative

$$
\mathcal{M} \xrightarrow{D} \Omega^{1}(\mathcal{A}) \otimes_{\mathcal{A}} \mathcal{M}
$$

with left and right Leibniz rule and flip

$$
\mathcal{M} \otimes_{\mathcal{A}} \Omega^{1}(\mathcal{A}) \xrightarrow{\sigma} \Omega^{1}(\mathcal{A}) \otimes_{\mathcal{A}} \mathcal{M}
$$

Right Leibniz rule:

$$
D(\xi f)=\sigma(\xi \otimes d f)+(D \xi) f
$$

σ 'brings' d to the left; in general $\sigma^{2} \neq 1$

The de Rham σ necessarily of the form

$$
\sigma(\xi \otimes \eta)=\eta \otimes \xi
$$

The flip is necessarily \mathcal{A}-bilinear

Bimodule \mathcal{A}-connection: the couple (D, σ)

Linear connection: $\quad \mathcal{M}=\Omega^{1}(\mathcal{A})$

We define the torsion map: $\Theta: \Omega^{1}(\mathcal{A}) \rightarrow \Omega^{2}(\mathcal{A})$
by $\Theta=d-\pi \circ D$; it is left-linear and

$$
\Theta(\xi) f-\Theta(\xi f)=\pi \circ(1+\sigma)(\xi \otimes d f)
$$

We impose $\pi \circ(\sigma+1)=0$

Using σ one can also construct an extension

$$
\mathcal{M} \otimes_{\mathcal{A}} \mathcal{M} \xrightarrow{D_{2}} \Omega^{1}(\mathcal{A}) \otimes_{\mathcal{A}} \mathcal{M} \otimes_{\mathcal{A}} \mathcal{M}
$$

by $D_{2}(\xi \otimes \eta)=D \xi \otimes \eta+\sigma_{12} \circ(\xi \otimes D \eta)$

Metric

$$
\Omega^{1}(\mathcal{A}) \otimes_{\mathcal{A}} \Omega^{1}(\mathcal{A}) \xrightarrow{g} \mathcal{A}, \quad g \circ \sigma \propto g
$$

The linear connection is metric compatible if

$$
g_{23} \circ D_{2}=d \circ g
$$

Example with differential calculus Ω_{η}^{*} over M_{3}^{+}:

$$
\Omega_{\eta}^{1} \otimes_{M_{3}^{+}} \Omega_{\eta}^{1}=M_{3}^{+}
$$

Therefore $\sigma=\operatorname{diag}(\mu, \mu-1), \quad \mu \in \mathbb{C}$
Define

$$
\eta=\eta_{1}-\eta_{1}^{*}, \quad \eta_{i j}=\eta_{i} \otimes \eta_{j}^{*}, \quad \zeta=\eta_{1}^{*} \otimes \eta_{1}
$$

Then $\sigma\left(\eta_{i j}\right)=\mu \eta_{i j}, \quad \sigma(\zeta)=-1$
The unique bilinear metric is given by

$$
g\left(\eta_{i j}\right)=\eta_{i} \eta_{j}^{*} \in M_{2}, \quad g(\zeta)=-e \in M_{1}
$$

It is real on $\eta_{i j}$ and imaginary on ζ

The unique covariant derivative is given by

$$
D \xi=-\eta \otimes \xi+\sigma(\xi \otimes \eta)
$$

The torsion vanishes

Thw connection is metric compatible if $\mu=1$

The parallelizable case: $\Omega^{1}(\mathcal{A})$ is free as a left or right \mathcal{A}-module and has a special basis θ^{a} with

$$
\left[f, \theta^{a}\right]=0, \quad 1 \leq a \leq n
$$

and dual to a set of derivations $e_{a}=\operatorname{ad} \lambda_{a}$:

$$
d f=e_{a} f \theta^{a}=\left[\lambda_{a}, f\right] \theta^{a}=-[\theta, f], \quad \theta=-\lambda_{a} \theta^{a}
$$

As a bimodule 'Dirac operator' θ generates $\Omega^{1}(\mathcal{A})$
In terms of the basis:

$$
\begin{array}{ll}
D \theta^{a}=-\omega^{a}{ }_{b c} \theta^{b} \otimes \theta^{c}, & \omega^{a}{ }_{b c} \in \mathcal{A} \\
\sigma\left(\theta^{a} \otimes \theta^{b}\right)=S^{a b}{ }_{c d} \theta^{c} \otimes \theta^{d}, & S^{a b}{ }_{c d} \in \mathcal{Z}(\mathcal{A})
\end{array}
$$

Linear connection $D \theta^{a}=-\theta \otimes \theta^{a}+\sigma\left(\theta^{a} \otimes \theta\right)$
A (more-or-less unique) metric: $\quad g\left(\theta^{a} \otimes \theta^{b}\right)=g^{a b}$
The connection is metric-compatible if

$$
\omega^{a}{ }_{b d} g^{d e}+\omega^{e}{ }_{f g} S^{a f}{ }_{b h} g^{h g}=0
$$

Consistency condition:

$$
2 \lambda_{c} \lambda_{d} P^{c d}{ }_{a b}-\lambda_{c} F^{c}{ }_{a b}-K_{a b}=0
$$

$P^{c d}{ }_{a b}$ define the product in the algebra of forms:

$$
\theta^{a} \theta^{b}=\pi\left(\theta^{c} \otimes \theta^{d}\right)=P_{c d}^{a b} \theta^{c} \otimes \theta^{d}
$$

$F^{c}{ }_{a b}$ are related to the 2-form $d \theta^{a}$:

$$
d \theta^{a}=-\frac{1}{2}\left(F_{b c}^{a}-2 \lambda_{e} P^{(a e)}{ }_{b c}\right) \theta^{b} \theta^{c}
$$

$K_{a b}$ are related to the curvature of the 'Dirac operator':

$$
d \theta+\theta^{2}=\frac{1}{2} K_{a b} \theta^{a} \theta^{b}
$$

The coefficients lie all in $\mathcal{Z}(\mathcal{A})(\equiv \mathbb{C})$
When

$$
P_{c d}^{a c}=\frac{1}{2}\left(\delta_{c}^{a} \delta_{d}^{b}-\delta_{d}^{a} \delta_{c}^{b}\right)
$$

the $F^{c}{ }_{a b}$ are hermitian, $K_{a b}$ anti-hermitian

Reality conditions on d :

$$
(d f)^{*}=d f^{*}, \quad\left(e_{a} f^{*}\right)^{*}=e_{a} f, \quad \lambda_{a}^{*}=-\lambda_{a}
$$

For general $f \in \mathcal{A}$ and $\xi \in \Omega^{1}(\mathcal{A})$ one has

$$
(f \xi)^{*}=\xi^{*} f^{*}, \quad(\xi f)^{*}=f^{*} \xi^{*}
$$

There are $I^{a b}{ }_{c d} \in \mathcal{Z}(\mathcal{A})$ such that

$$
\left(\theta^{a} \theta^{b}\right)^{*}=\imath\left(\theta^{a} \theta^{b}\right)=I^{a b}{ }_{c d} \theta^{c} \theta^{d}
$$

and $J^{a b}{ }_{c d} \in \mathcal{Z}(\mathcal{A})$ such that

$$
\left(\theta^{a} \otimes \theta^{b}\right)^{*}=\jmath_{2}\left(\theta^{a} \otimes \theta^{b}\right)=J^{a b}{ }_{c d} \theta^{c} \otimes \theta^{d}
$$

Compatibility with the product: $\pi \circ \jmath_{2}=\imath \circ \pi$
Therefore: $(\xi \eta)^{*}=-\eta^{*} \xi^{*}$

One finds also the relations

$$
(f \xi \eta)^{*}=(\xi \eta)^{*} f^{*}, \quad(f \xi \otimes \eta)^{*}=(\xi \otimes \eta)^{*} f^{*}
$$

Reality conditions on D :

$$
D \xi^{*}=(D \xi)^{*}, \quad\left(\omega_{b c}^{a}\right)^{*}=\omega_{d e}^{a}{ }_{d e}\left(J_{b c}^{d e}\right)^{*}
$$

From the Leibniz rules and the equalities

$$
(D(f \xi))^{*}=D\left((f \xi)^{*}\right)=D\left(\xi^{*} f^{*}\right)
$$

for all f one finds the conditions

$$
(f D \xi)^{*}=\left(D \xi^{*}\right) f^{*}, \quad(\xi \otimes \eta)^{*}=\sigma\left(\eta^{*} \otimes \xi^{*}\right)
$$

The reality condition for the metric becomes

$$
g\left((\xi \otimes \eta)^{*}\right)=(g(\xi \otimes \eta))^{*}, \quad S^{a b}{ }_{c d} g^{c d}=\left(g^{b a}\right)^{*}
$$

Define the curvature as the map

$$
\text { Curv : } \Omega^{1}(\mathcal{A}) \longrightarrow \Omega^{2}(\mathcal{A}) \otimes_{\mathcal{A}} \Omega^{1}(\mathcal{A})
$$

given by \quad Curv $=D^{2}=\pi_{12} \circ D_{2} \circ D$

Reality conditions on the curvature:

$$
\operatorname{Curv}\left(\xi^{*}\right)=(\operatorname{Curv}(\xi))^{*}
$$

We shall impose a stronger condition

$$
D_{2}(\xi \otimes \eta)^{*}=\left(D_{2}(\xi \otimes \eta)\right)^{*}
$$

There are $J^{a b c}{ }_{\text {def }} \in \mathcal{Z}(\mathcal{A})$ such that

$$
\left(\theta^{a} \otimes \theta^{b} \otimes \theta^{c}\right)^{*}=J_{d e f}^{a b c} \theta^{d} \otimes \theta^{e} \otimes \theta^{f}
$$

We find that

$$
J^{a b c}{ }_{d e f}=J^{a b}{ }_{p q} J^{p c}{ }_{d r} J^{q r}{ }_{e f}=J^{b c}{ }_{p q} J^{a q}{ }_{r f} J^{r p}{ }_{d e}
$$

The second equality is the Yang-Baxter Equation

It becomes the braid equation for the map σ :

$$
\sigma_{12} \sigma_{23} \sigma_{12}=\sigma_{23} \sigma_{12} \sigma_{23}
$$

6. Infinite-dimensional models

The example $\mathcal{A}=\mathcal{C}(V) \otimes M_{n} \quad$ (Kaluza-Klein):

$$
\Omega^{1}\left(M_{n}\right) \simeq \bigoplus_{1}^{d} M_{n}, \quad n \gg d
$$

Differential calculus: $\quad \Omega^{*}(\mathcal{A})=\Omega^{*}(V) \otimes \Omega^{*}\left(M_{n}\right)$
Therefore $\Omega^{1}(\mathcal{A})=\Omega_{h}^{1} \oplus \Omega_{v}^{1}$ with

$$
\Omega_{h}^{1}=\Omega^{1}(V) \otimes M_{n}, \quad \Omega_{v}^{1}=\mathcal{C}(V) \otimes \Omega^{1}\left(M_{n}\right)
$$

The differential $d f$ of $f \in \mathcal{A}$ is given by

$$
d f=d_{h} f+d_{v} f, \quad \theta^{i}=\left(\theta^{\alpha}, \theta^{a}\right)
$$

Gauge group (left): $\quad \mathcal{U}_{n}=\mathcal{C}(V) \otimes U_{n}$
We have $\quad \Omega \psi=D^{2} \psi \quad$ where (with $\quad K_{a b}=0$)
$\Omega=\frac{1}{2} \Omega_{i j} \theta^{i} \theta^{j}=\frac{1}{2} F_{\alpha \beta} \theta^{\alpha} \theta^{\beta}+D_{\alpha} \phi_{b} \theta^{\alpha} \theta^{b}+\frac{1}{2} \Omega_{a b} \theta^{a} \theta^{b}$
with $\Omega_{a b}=\left[\phi_{a}, \phi_{b}\right]-C^{c}{ }_{a b} \phi_{c}$

The electromagnetic action for (A, ϕ) is

$$
\begin{aligned}
S[A, \phi] & =\frac{1}{4} \operatorname{Tr} \int F_{\alpha \beta} F^{\alpha \beta} \\
& +\frac{1}{2} \operatorname{Tr} \int D_{\alpha} \phi_{a} D^{\alpha} \phi^{a}-\int V(\phi) \\
\text { with } V(\phi) & =-\frac{1}{4} \operatorname{Tr}\left(\Omega_{a b} \Omega^{a b}\right)
\end{aligned}
$$

If $d=3$ the (hidden) 'quantum cell' has area

$$
2 \pi k \simeq \frac{1}{n} 4 \pi r^{2}
$$

The potential $V(\phi)$ vanishes when ϕ lies on a gauge orbit of a representation of $S U_{2}$
There are $\quad p(n) \simeq \frac{e^{\pi \sqrt{2 n / 3}}}{4 n \sqrt{3}} \quad$ such orbits
The gravitational action is Einstein-Hilbert in 'dimension' $4+d$ (plus Gauss-Bonnet terms)

The examples \mathbb{C}_{q}^{n} and \mathbb{R}_{q}^{n} :
The $S O_{q}(n)$ braid matrix has a decomposition

$$
\hat{R}=q P_{s}-q^{-1} P_{a}+q^{1-n} P_{t}
$$

with the P_{s}, P_{a}, P_{t} mutually orthogonal and

$$
P_{s}+P_{a}+P_{t}=1
$$

For example $\quad P_{t}{ }^{i j}{ }_{k l}=\left(g^{m n} g_{m n}\right)^{-1} g^{i j} g_{k l}$ and

$$
g_{i l} \hat{R}^{ \pm 1 l h}{ }_{j k}=\hat{R}^{\mp 1 h l}{ }_{i j} g_{l k},
$$

$$
g^{i l} \hat{R}^{ \pm 1 j k}{ }_{l h}=\hat{R}^{\mp 1 i j}{ }_{h l} g^{l k}
$$

The $g_{i j}$ is the q-deformed euclidean metric
The q-euclidean 'spaces' \mathbb{C}_{q}^{n} : generators x^{i} with

$$
P_{a}{ }^{i j}{ }_{k l} x^{k} x^{l}=0
$$

Real q-euclidean 'spaces' $\mathbb{R}_{q}^{n}: q \in \mathbb{R}^{+}$and

$$
\left(x^{i}\right)^{*}=x^{j} g_{j i}
$$

The 'length' squared $\quad r^{2}=g_{i j} x^{i} x^{j}=\left(x^{i}\right)^{*} x^{i}$ generates the center of \mathbb{R}_{q}^{n}

Extend \mathbb{R}_{q}^{n} by r, r^{-1} and the dilatator Λ

$$
x^{i} \Lambda=q \Lambda x^{i}, \quad \Lambda^{*}=\Lambda^{-1}
$$

Center now trivial; set $d \Lambda=0$

Two $S O_{q}(n)$-covariant differential calculi:

$$
x^{i} \xi^{j}=q \hat{R}^{i j}{ }_{k l} \xi^{k} x^{l}
$$

for $\Omega^{1}\left(\mathbb{R}_{q}^{n}\right)$ and

$$
x^{i} \bar{\xi}^{j}=q^{-1} \hat{R}^{-1 i j}{ }_{k l} \bar{\xi}^{k} x^{l}
$$

for $\bar{\Omega}^{1}\left(\mathbb{R}_{q}^{n}\right)$; no real calculus
Extend the involution to $\Omega^{1}(\mathcal{A}) \oplus \bar{\Omega}^{1}(\mathcal{A})$ by

$$
\left(\xi^{i}\right)^{*}=\bar{\xi}^{j} g_{j i}
$$

There exists a frame $\left(\theta^{a}, \bar{\theta}^{a}\right)$ with $\left(\theta^{a}\right)^{*}=\bar{\theta}^{b} g_{b a}$

The example \mathbb{R}_{q}^{1} :
The algebra $\mathbb{R}_{q}^{1}: x$ and Λ with $x \Lambda=q \Lambda x$
We choose x hermitian and $q \in(1, \infty)$
Write $x=q^{y}: \quad \Lambda^{-1} y \Lambda=y+1$

Differential calculus $\Omega^{*}\left(\mathbb{R}_{q}^{1}\right)$:

$$
x d x=q d x x, \quad d x \Lambda=q \Lambda d x
$$

Introduce $z=q^{-1}(q-1)>0$ and choose

$$
\lambda_{1}=-z^{-1} \Lambda
$$

The calculus is defined by $e_{1}=\operatorname{ad} \lambda_{1}$

Adjoint derivation e_{1}^{\dagger} of $e_{1}: \quad e_{1}^{\dagger} f=\left(e_{1} f^{*}\right)^{*}$

Since Λ is unitary e_{1} is not real; use $\bar{\Omega}^{*}\left(\mathbb{R}_{q}^{1}\right)$:

$$
x \bar{d} x=q^{-1} \bar{d} x x, \quad \bar{d} x \Lambda=q \Lambda \bar{d} x
$$

based on \bar{e}_{1} formed from $\bar{\lambda}_{1}=-\lambda_{1}^{*}: \quad e_{1}^{\dagger}=\bar{e}_{1}$

The dual frames θ^{1} and $\bar{\theta}^{1}$:

$$
\begin{array}{ll}
\theta^{1}=\theta_{1}^{1} d x, & \theta_{1}^{1}=\Lambda^{-1} x^{-1} \\
\bar{\theta}^{1}=\bar{\theta}_{1}^{1} \bar{d} x, & \bar{\theta}_{1}^{1}=q^{-1} \Lambda x^{-1}
\end{array}
$$

Consider the element of $\mathbb{R}_{q}^{1} \times \mathbb{R}_{q}^{1}$:

$$
\lambda_{R 1}=\left(\lambda_{1}, \bar{\lambda}_{1}\right)=z^{-1}\left(-\Lambda, \Lambda^{-1}\right)
$$

The $e_{R 1}=\operatorname{ad} \lambda_{R 1}$ is real; the structure of

$$
\Omega_{R}^{*}\left(\mathbb{R}_{q}^{1}\right) \subset \Omega^{*}\left(\mathbb{R}_{q}^{1}\right) \times \bar{\Omega}^{*}\left(\mathbb{R}_{q}^{1}\right)
$$

is given by the relations $\quad d_{R} \theta_{R}^{1}=0, \quad\left(\theta_{R}^{1}\right)^{2}=0$ The forms $\theta^{1}, \bar{\theta}^{1}$ and θ_{R}^{1} are exact

There are two torsion-free connections, one compatible with the unique local metric:

$$
g\left(\theta_{R}^{1} \otimes \theta_{R}^{1}\right)=1
$$

The flip: $\sigma_{R}=1$; the covariant derivative is real

Represent \mathbb{R}_{q}^{1} on a Hilbert space $\mathcal{R}_{q}=\{|k\rangle\}$ by

$$
x|k\rangle=q^{k}|k\rangle, \quad \Lambda|k\rangle=|k+1\rangle
$$

The element y has the representation

$$
y|k\rangle=k|k\rangle
$$

Extend to the differential calculus:
For the two elements $d x$ and $\overline{d x}$:

$$
d x|k\rangle=q^{k+1}|k+1\rangle, \quad \bar{d} x|k\rangle=q^{k}|k-1\rangle
$$

Then $\quad \theta^{1}=1, \quad \bar{\theta}^{1}=1$
The $d_{R} x$ can be represented by the operator

$$
d_{R} x|k\rangle=q^{k}(q|k+1\rangle+\overline{|k-1\rangle})
$$

We have placed a bar over the second copy of \mathcal{R}_{q}
On $\mathcal{R}_{q} \oplus \mathcal{R}_{q}$ we have the representation

$$
\theta_{R}^{1}=1
$$

Interpretation of the metric in terms of observables since we have a representation of x and $d_{R} x$ on the Hilbert space \mathcal{R}_{q}

In this representation the distance s along the 'line' x is given by the expression

$$
d s(k)=\| \sqrt{g_{11}^{\prime}} d_{R} x(|k\rangle+\overline{|k\rangle})\|=\| \theta_{R}^{1}(|k\rangle+\overline{|k\rangle}) \|
$$

We have used here

$$
g^{\prime 11}=g\left(d_{R} x \otimes d_{R} x\right)=\left(e_{R 1} x\right)^{2} g\left(\theta_{R}^{1} \otimes \theta_{R}^{1}\right)
$$

We find that

$$
d s(k)=\||k\rangle+\overline{|k\rangle} \|=1
$$

The 'space' is discrete and the spacing between 'points' is uniform

The example \mathbb{R}_{q}^{3} :
We set $x^{a}=\left(x^{-}, y, x^{+}\right), \quad h=\sqrt{q}-1 / \sqrt{q}$
The defining relations are

$$
\begin{aligned}
& x^{-} y=q y x^{-}, \\
& x^{+} y=q^{-1} y x^{+}, \\
& {\left[x^{+}, x^{-}\right]=h y^{2}}
\end{aligned}
$$

The metric matrix is given by $g_{i j}=g^{i j}$ with

$$
g_{i j}=\left(\begin{array}{ccc}
0 & 0 & 1 / \sqrt{q} \\
0 & 1 & 0 \\
\sqrt{q} & 0 & 0
\end{array}\right)
$$

By direct calculation one finds that

$$
P_{t}{ }^{a b}{ }_{c d} \theta^{c} \theta^{d}=0, \quad P_{s}{ }^{a b}{ }_{c d} \theta^{c} \theta^{d}=0
$$

Therefore

$$
P_{c d}^{a b}=P_{(a)}{ }^{a b}{ }_{c d}
$$

Consider the elements $\lambda_{a} \in \mathbb{R}_{q}^{3}$ with

$$
\begin{aligned}
& \lambda_{-}=+h^{-1} q \Lambda y^{-1} x^{+} \\
& \lambda_{0}=-h^{-1} \sqrt{q} \Lambda y^{-1} r \\
& \lambda_{+}=-h^{-1} \Lambda y^{-1} x^{-}
\end{aligned}
$$

The $e_{a}=\operatorname{ad} \lambda_{a}$ are dual to the θ^{a}
Commutation relations identical to those of x^{a} :

$$
\begin{aligned}
& \lambda_{-} \lambda_{0}=q \lambda_{0} \lambda_{-}, \\
& \lambda_{+} \lambda_{0}=q^{-1} \lambda_{0} \lambda_{+}, \\
& {\left[\lambda_{+}, \lambda_{-}\right]=h\left(\lambda_{0}\right)^{2}}
\end{aligned}
$$

These equations can be rewritten more compactly in the form

$$
P^{a b}{ }_{c d} \lambda_{a} \lambda_{b}=0
$$

This is the consistancy relation of the frame
formalism with $C^{a}{ }_{b c}=0, \quad F_{a b}=0$

Example: the Lobachevsky plane
Let $V=\left\{(\tilde{x}, \tilde{y}) \in \mathbb{R}^{2} \mid \tilde{y}>0\right\}$
A moving frame is given by
$\theta^{1}=\tilde{y}^{-1} d \tilde{x}, \quad \theta^{2}=\tilde{y}^{-1} d \tilde{y}, \quad d s^{2}=\tilde{y}^{-2}\left(d \tilde{x}^{2}+d \tilde{y}^{2}\right)$

Introduce \mathcal{A}_{h} with hermitian generators (x, y) and relation

$$
[x, y]=-2 i h y
$$

A real frame is given by

$$
\theta^{1}=y^{-1} d x, \quad \theta^{2}=y^{-1} d y
$$

The structure of $\Omega^{*}(\mathcal{A})$ is given by

$$
\left(\theta^{1}\right)^{2}=0, \quad\left(\theta^{2}\right)^{2}=0, \quad \theta^{1} \theta^{2}+\theta^{2} \theta^{1}=0
$$

This algebra and differential calculus are invariant under the coaction of the Jordanian deformation of $S L_{2}$; Killing: $\underline{s l}(2, \mathbb{R})$

Metric: $g\left(\theta^{a} \otimes \theta^{b}\right)=g^{a b}$

The unique torsion-free, metric-compatible linear connection:

$$
D \theta^{1}=\theta^{1} \otimes \theta^{2}, \quad D \theta^{2}=-\theta^{1} \otimes \theta^{1}
$$

The curvature map becomes
$\operatorname{Curv}\left(\theta^{1}\right)=\theta^{1} \theta^{2} \otimes \theta^{2}, \quad \operatorname{Curv}\left(\theta^{2}\right)=-\theta^{1} \theta^{2} \otimes \theta^{1}$

Noncommutative Lobachevsky: $\quad R_{1212}=-1$

Representation: introduce (ξ, η) with $[\xi, \eta]=2 i h$
Express: $\quad x=\xi \eta-i h, \quad y=\xi$
Find a representation of ξ and η

Define $\quad \Lambda=e^{i x}, \quad q=e^{-2 h}$
Then $y \Lambda=q \Lambda y$, which defines \mathbb{R}_{q}^{1} with another differential calculus

