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1. General introduction and motivation

History:

Heisenberg et al. and the lattice (1930’s)

Snyder and ‘fuzz’ (1947); Lorentz invariance

von Neumann and ‘noncommutative

geometry’ (1950’s)

Connes and ‘noncommutative differential
geometry’ (1980’s)



The simplest expression of Snyder’s idea:

Consider S? with an action of SOs: choose a
lattice: the north and south poles; this breakes

SO3 invariance

The lattice algebra of functions = C x C; extend
to M5 (C) to recover the invariance; the two
points become two ‘cells’; an ‘observable’ is an
hermitian 2 X 2 matrix, with two real eigenvalues,

its values on the two ‘cells’

Similar to replacing a classical spin which can
take two values by a quantum spin of total spin
1/2; only the latter is invariant under SOj3

General s with n = 2s + 1; replace Ms by M,,;
there are n cells of area 27k with
_ Vol(S?)

" ok

%] = (length)”



Mathematics:

Formulate as much as possible the geometry
of a manifold V' in terms of an algebra C(V")
of complex-valued functions (smooth,

continuous, measurable, all functions)
(Koszul 1960’s)

Replace the algebra C(V') — A by a
noncommutative algebra A (associative, with

unit and with an involution )

Since V' as a manifold of dimension m can be
embedded in R"™ for some n > m, choose A
defined in terms of n generators and n — m

relations

Represent the algebra A by an algebra of
operators on a Hilbert space



Physics:

Practical physics: introduce a cut-off A;

points ‘fuzzy’ to order A~1

‘Fundamental’ Physics: replace points by

‘Planck cells’; no UV divergences

Solid-state analogy: Coordinates as order

parameters; course-graining

Related things: random lattices, qantum nets,
twistors, Sakarov’s induced gravity, Wheeler’s

graviton as phonon et cetera

Unrelated things: Schrodinger’s position

operators
alt) = x(t) +m~2S x p(t)

to explain the Zitterbewegung of an electron



Comparison with quantum mechanics: particle in

a plane: (3317 $27p17p2)
a) Classical mechanics: 4 commuting operators

b) Quantum mechanics: [z°,p;] = hd’;

‘Bohr cells’ of area 27wh

c) Magnetic field B normal to the plane:
[p1, p2] = iheB; ‘Landau cells’ of area heB:;
IR cut-off: p* > heB

d) Gaussian curvature K: p* > h*K

e) ‘Quantized’ coordinates: z* — ¢*;
[qt, %] = ikq'?; ‘Planck cells’ of area 27k;
UV cut-off: p? < h?/k

Situations d) and e) together imply:

dp,d
Iz/fl—szrvlog(EK)
p1 + D3



Let ¢, be eigenmodes of an operator A,
A¢, = \-¢,, which span a Hilbert space H C A:

Tr (¢5ds) =0rsy &= > & Tr(¢}0)

The 2-point function G € ' H ® H:

G=> M\'¢,®¢;

Suppose A = A(q', ¢?) and rewrite

¢" ®1=qg"+oq", 1®q¢" =qg" —o0g"

Then if ¢'? is in the center of the algebra

1
[@",5¢"] =0, [¢",3°] = [0q",6q°] = 5@‘7%(112

There can be no state |0) (on the diagonal) with

3¢*0) =0, d¢*|0) =0



Complication: ¢'? need not lie in the center

Conjecture to determine ¢'?:

it determines (in Wheeler’s language) the ‘lattice’
spacings away from (flat space) equilibrium;
it is in 1-1 correspondence with the classical

‘eravitational’ field

As examples we shall find that (after addition of a

differential calculus) if
a) ¢'2 = ¢3, Y (¢")? = r?: the surface is a sphere
b) ¢'? = 1: the surface is flat

c) kq'? = —2hq?*: the surface is a pseudosphere

In phase space the Jacobi identities imply:

[¢",p;] = m(s;i + z‘i%Aj;.



A noncommutative vision of gravity:

The euclidean classical action:

Slg] = ANVOl(V)[g] + 12 /V Ra...

The euclidean quantum action:

[lg] = Slg] + 5T log Alg] = zopifVol(V) g]) +

2P / R+ z(log “2)Sy[g] + 0(h2) + - -
174 2
Alg|: any mode in a gravitational field g
Sakharov’s idea: there is no classical action

Wheeler’s idea: ‘Gravitation is to particle physics
as elasticity is to chemical physics: merely a

statistical measure of residual energies.’

Noncommutative version: Gravitation is a
measure of a variation of the spectral distribution

of some operator away from an ‘equilibrium’ value



A typical model:

Replace (Minkowski) coordinates x* by generators

g" of a noncommutative algebra A with
", q¢"] = ik¢"”,  E~pup’=Gh

Structure of the algebra: [¢*, ¢*Y] et cetera

‘Heisenberg’ uncertainty relations: A%k <1

Fuzzy space-time: cells of volume ~ (27k)?

In the limit up — oco: ¢* — a* or perhaps:

Singular ‘renormalization constant’: ¢# — zz*

Representation: ¢" become unbounded hermitian

operators on some Hilbert space

The whole idea is contained in the diagram

Y )
Cut-off Gravity
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2. Finite-dimensional models

Consider the decomposition C* =C™ ¢ C*™™
Then

My, M, _
M, = = Mo M,
Mn—// Mn—m

with M}* = My, x Myy_pn, Mo =M UM;"

n

Examples: n=2, m=1, n=3, m=1

M, = M, (z%) =
{(z%) | 2% = kr—1J%, [J,, Jp] = i€qpeJC,
J,J¢ = (n? —1)/4 =r*/k*}

A2
27k

From Casimir relation: gabxaxb =72  no

M, = Al/n — Mn(uﬂ)) —
{(u,v) |u™ =v™ =1, uv = quu,

q=e*" a=1/n}
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Representation of A, ,,,: {|j)1}, {|k)2} € C"

uli)1 = ¢’ |9)1, v|i) =14+ 1)1,
ulk)o = [k —1)2, v|k)2 = ¢"|k)2

‘Fourier’ transformation:

|
—_
zl
—

n

1 : 1 .

N T +ik| BV — —— —Jk|;
7 Tn l:Oq k)2, |k)2 \/ﬁjzoq i
One deduces immediately the relations

uv = quu, u" =1, vt =1, qg" =1
Define hermitian matrices x and y by

zlih = —Jlih,  ylk)2 = —klk)s
r r
One finds that
2

U — ez’x/r, b — eiy/r7 q= e’ﬂ%/TQ’ n — (27TT)

21k
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The algebra M, has derivations
Der(M,,) =
{X My, — M, | X(fg) =Xfg+ fXg}

1 1
For example: e; = —ady, ey =——adx
vk vk

eru = 1r tu(l —nP), ew=0,

eau = 0, eav = ir 1v(1 — nPy)

with P1:|O>2<O‘, sz\n—1>1<n—1|
One finds eju” =0, exv” =0, [e1,e3] =0

Recall 2-torus with @ = e*®/", ¢ = ¢¥/" and

erf =0zf, eaf = 05f:

With lattice: u™ =1, v"™ = 1 but no derivations
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3. Differential calculi

Consider associative A and a graded algebra

Q" (A) = P (A), QA =4

i>0

direct sum of a family of A-bimodules; if the

grading is a Zs-grading we write Q7 (A) = A

A differential d is a graded derivation of €2*(.A)
with d? = 0; if a € Q*(A) and 8 € Q/(A) then
af € QI(A) and d(aB) € QI A) with

d(aB) = daf + (—1)'adl
Differential algebra = a graded algebra with d
We say Q*(A) is a differential calculus over A

Universal calculus:  Q (A)

There exists a construction uniquely defined by
the bimodule Q1!(A)
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Define the map AL A A by

Define Q! (A) € A® A image of d,; for Q'(A)
another bimodule of 1-forms define

QL (A) 25 01 (A)

by
¢1(du f) = df
Because d1 = 0 the map is well defined; we have
A S5 QL(A)
| ¢1 |
A -4 oA

We can write Q'(A) = Ql(A)/Ker ¢y

Every bimodule of 1-forms can be so written

Product: Q'(A) ®4 Q1 (A) = Q2(A)
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Example: let A =C(V) and Q'(A) = Q1 (V)
If f e A then d,f is the function of 2 variables
duf(z,y) = f(y) — f(2)
The de Rham 1-form: df = 0, fda?
Expand the function f(y) about the point x:
fly) = f(x) + (¥ —a)orf + -
The map ¢ is given by
o1 (y* — ) = da?
It annihilates f(x,y) € Q% (A) 2nd order in z — y

One such form is fd,g — dugf:
(fdug —dugf)(z,y) = —=(f(y) = f(2))(9(y) — g(x))

It does not vanish in Q! (A) but its image in
Q' (A) under ¢, is equal to zero
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The Dirac operator v = iv*Dgat), 9 € H

0 D~
— — + _
D (D+ o)’ H=H"®oH,

Dy =Dyt + D7y, D¥Y* € HT

Moving frame e, with 6%(eg) = 43

D(fy) = (iea )y + DY

and therefore

eoszya — _7;[@7 f]

Map v +— 6%; write

df = eaf0™ = —i[D, f]

If the commutator is taken to be graded we have

d’f =-p* fl,  d*#0

The set (A, H,]D) is called a spectral triple
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Example: write C?> = C! @ C! and decompose
My = M & My

The commutative algebra M, is the algebra of

functions on 2 points

Graded derivation do of o € M,,:
do = —[n, o, neM,;
The bracket is graded and 7 is antihermitian

We find dn = —2n2 and d2a = (n?, o

Set n? = —1: CZEd, d? = 0;
1) = M> is a differential calculus over M,

Since for all p: Q2P = M;", Q2 = My

we can identify
x _ O+ — + +
Q, =Q, &, Q. =M,
Notice that dn+n°* =1

Spectral triple: (M, C2,in)
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Example: write C* = C? @ C! and decompose
M3z = My & My

The algebra M;L — Mo x M7 ~ functions on 2

points with an extra structure on one

Graded derivation da = —[n, a] of a € M,, with

0 0 ai
n = 0 0 ax | €M,
—a] —a; 0

We have QY = My, Q) =My

It is not possible to have d? = 0; define
02 =M /Imd*> =My, Q2=0,p>3

(17 is a differential calculus over M

Notice that again dn+n° =1

Spectral triple: (ngr, C3,1in)
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Example: M,, with basis A,:

1 1 1
)\a)\b — _Ccab)\c + _Dcab)\c — —4dab
2 2 n

Killing metric: g,p; structure constants: C°,

Contruct Q*(M,,) with generators 0% and relations
f@b _ 9bf7 Haeb _ _eb(ga

and a differential defined by

1
d\* = C%,. \°0°, do® = —50%0 0°6°

Special 1-form: 6 = —\, 0% = —%)\ad)\“

From the definitions df = —|0, f]

Notice that df + 62 = 0
Spectral triple: (M,,,C™, i)
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4. Yang-Mills connections

Connection = covariant derivative

Left connection (Yang-Mills) on left A-module H:
H 25 QYA @4 H
with a left Leibniz rule

D(fy) =df @ ¢ + fD, feA YeH

Extension: Q2*(A) @4 H Lo (A) @4 H by
Da®y)=da®p+ (—1)"a® Dy, «oecQ"(A)

We shall drop the ‘®’ symbol

In particular one verifies that

D*(fy) = fD*Y

Define Curv(y) = D?*
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Example with differential calculus €27 over M;
and with H the bimodule M; :

Covariant derivative: D(0)¢ = —n

In fact: Doy (f¥) = —nfy = —fnp +dfy
General case: Dy = —mp — ¢

One can write DY = dy + w1 in terms of a

‘connection form’ w which transforms as

1

W =g 'wg+g 'dg, geUxU

In particular: 7’ = n; therefore

w=n+¢, ¢ =g ¢g
Curvature: Q=dw+w?=1+¢*=1—|¢|?
Action: V(¢) = 1Tr (1 —|¢|?)?
The electromagnetic action on the ‘space’ M;"
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Example with differential calculus Q*(M,,) over
M, and with H the bimodule M,,:

Covariant derivative: D gy = —6v
General case: Dy = —60y — 1o

In terms of a ‘connection form’

1

W' =g 'wg+g'dg, geU,

In particular: 6’ = 6; therefore

w=0+¢, ¢ =g ¢y

Curvature: Q = dw + w? = %Qabé’aﬁb

where Qa5 = [@a, Pp] — Cup P
C¢q.p is a ‘Christoffel symbol’

Action: V(¢) = +Tr (£2,,2%?)

The electromagnetic action on the ‘space’ M,

23



5. Metrics and linear connections

Let M an A-bimodule and 2*(.A) a differential

calculus; covariant derivative
D 1
M — Q' (A) @4 M
with left and right Leibniz rule and flip

M @4 QHA) -5 QL (A) @4 M

Right Leibniz rule:

D(&f) =o(®df)+ (D) f

o ‘brings’ d to the left; in general o2 # 1

The de Rham o necessarily of the form

oc(§®@n) =n®¢

The flip is necessarily A-bilinear

Bimodule A-connection: the couple (D, o)

24



Linear connection: M = Q(A)

We define the torsion map: © : Q1 (A) — Q2(A)
by © =d—moD ;itis left-linear and

O)f -0(f) =mo(l+0)(E®df)

We impose wo(c+1)=0

Using o one can also construct an extension
MM 220N A) @4 M4 M

by D2((®n)=D{®@n+ o120 (£ ® Dn)

Metric

QA @aQ(A) = A, goooxyg

The linear connection is metric compatible if

goz3o Do =dog

25



Example with differential calculus €27 over M; :
1 1
2, O 2, = M;
Therefore o = diag(p, u — 1), peC
Define

N=m-—n Nij=1n0n, (=nQm

Then o(nij) = pniz,  o(Q) =-1

The unique bilinear metric is given by

g(nij) = min; € Ma,  g(¢) = —e € My

It is real on 7;; and imaginary on ¢

The unique covariant derivative is given by

D= -nR&E+0(®n)

The torsion vanishes

Thw connection is metric compatible if =1

26



The parallelizable case: Q1 (A) is free as a left or
right A-module and has a special basis #* with

Lf, 0] =0, 1<a<n
and dual to a set of derivations e, = ad \,:

df — 6a,fé)a — P‘aaf]ea — _[eaf]a 0 = _)\aea

As a bimodule ‘Dirac operator’ 6 generates Q!(A)

In terms of the basis:
DO* = —w%,.0° ® 6°, wh. € A

o(09 ® 0°) = S ,0¢ ® 01, S, € Z(A)

Linear connection D#% = —0 ® 0* + 0(0* ® 0)
A (more-or-less unique) metric: g(6% ® 0°) = g

The connection is metric-compatible if

W g™ + w48 g™ =0
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Consistency condition:

2)\c)\dPCdab — )\chab — Kab =0

P4, define the product in the algebra of forms:

9&91) _ 7_‘_(00 ® Qd) — Pabcdec ® (9d

F€,, are related to the 2-form d6¢:

1
A9 = — = (F*ye — 2\ P, )0b6°

K, are related to the curvature of the ‘Dirac

operator’:

1
do + 6% = 5Kabea'Hb

The coefficients lie all in Z(A) (= C)

When
1
P g = (026 — 5500)

the F'°,;, are hermitian, K,;, anti-hermitian
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Reality conditions on d:

(df)" =df*,  (eaf")" =eafs Az =—Aa

For general f € A and ¢ € Q'(A) one has
(fO*=¢&r, &N =r¢
There are 1%.; € Z(A) such that
(Haé)b)* _ Z(eaeb) _ Ia,bcdé)c(gd
and J%.; € Z(A) such that

(Ha ® Qb)* _ ]2(0a ® Hb) _ Jabcdec ® ed

Compatibility with the product: mwo )y =107
Therefore: (&én)* = —n*&*

One finds also the relations

(fen)" = (En)"f,  (fe@n) =E@n)"f
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Reality conditions on D:

De" = (DE)",  (wbe)” = wae(J*pe)”

From the Leibniz rules and the equalities

(D(f€))" = D((f€)") = D" f7)

for all f one finds the conditions

(fDE)" = (DE) [, (E@n) =on” @)

The reality condition for the metric becomes

g(€@m)™) = (g€®n)",  S%ag™ = (g")"

Define the curvature as the map
Curv: Q'(A) — Q*(A) @4 QH(A)

given by Curv=D? =m30D50D
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Reality conditions on the curvature:

Curv(¢®) = (Curv(§))”

We shall impose a stronger condition

Dy(§®@n)" = (D2(( @)

There are J%¢;.; € Z(A) such that

(9& ® Hb R 90)* _ Jabcdefed ® He ® 6)f

We find that
Jabcdef _ JabqupCdTJQTef _ chquaqTfJTPde

The second equality is the Yang-Baxter Equation

It becomes the braid equation for the map o:

012023012 — 023012023
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6. Infinite-dimensional models
The example A =C(V)® M, (Kaluza-Klein):

d
O (M) ~ P M,, n>>d
1

Differential calculus: Q2*(A) = Q*(V) ® Q*(M,,)
Therefore Q'(A) = Q; © Q, with

Q; = Q' (V) ® M,, QL =C(V)®Q'(M,)

v

The differential df of f € A is given by

df = duf +dof, 6 = (6,6

Gauge group (left): U, =C(V)® U,
We have Qi = D?*ip  where (with K, = 0)

1
0 —

. 1 1
= §Qij9’693 — 5 a60a95+Da¢b0aeb+§Qabea9b
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with Qab = [Qba, be] — Ccab(fbc
The electromagnetic action for (A, ¢) is

S[A, ¢] = Iy /FagFo‘ﬁ

+ 5T [ Dasun et~ [ V(o)
with V(¢) = —1Tr (2.,02)

If d = 3 the (hidden) ‘quantum cell’ has area

1

Ik ~ —Amr?
n

The potential V' (¢) vanishes when ¢ lies on a
gauge orbit of a representation of SU,
6%\/2ﬂ/3

There are  p(n) ~ such orbits

4n\/§

The gravitational action is Einstein-Hilbert in

‘dimension’ 4 + d (plus Gauss-Bonnet terms)
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The examples C and Ry

The SO, (n) braid matrix has a decomposition
R=qPs—q 'P.+q' P,
with the Py, P,, P; mutually orthogonal and
P+ P, + P =1
For example P;Y = (¢™"gmn) 19 gr; and
gil Rillhjk = Rqﬂhlij ik,
g REVIk, — RFLI, Ik
The g;; is the g-deformed euclidean metric
The g-euclidean ‘spaces’ C: generators z* with
Paijklazkxl =0
Real g-euclidean ‘spaces’ Rj: ¢ € RT and
(¢')" = 27 g;i
2

The ‘length’ squared r? = g;;z'z? = (z*)*z"

generates the center of Ry
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Extend Ry by r, r~! and the dilatator A
z'A = gAz?, A*=A"1

Center now trivial; set dA =0

Two SO, (n)-covariant differential calculi:
r'¢) = C]Rijk;lﬁkl’l
for Q' (R}) and
P = TRV &Ry
for Q'(R?); no real calculus

Extend the involution to Q(A) ® Q' (A) by

(fi)* — gjgjz'

There exists a frame (6%,0%) with (0%)* = 0°gq
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The example Ré:
The algebra Ré: x and A with zA = qAx
We choose = hermitian and ¢ € (1, 00)

Write z = ¢¥: A7 lyA =y +1

Differential calculus Q*(R]):
xdxr = qdxx, dxA = qAdx

Introduce z = ¢~ !(¢ — 1) > 0 and choose

The calculus is defined by e; = ad \q
Adjoint derivation el of e1: el f = (e1f*)*

Since A is unitary e; is not real; use Q*(R;):
rdr = ¢ ldxx, dxA = qAdzx

based on €; formed from \; = —A]: e =€
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The dual frames ! and '

0! = 0ldx, 61 =A"'z7*,

0! = 0ldx, 67 =q ‘Azt
Consider the element of R} x R!:

Ari = (A, ) =27 H(=A AT
The ep; = ad A\p; is real; the structure of
QR(R)) C Q" (R)) x Q" (R})

is given by the relations dgfy =0, (05)* =0

The forms 01, 6! and 0} are exact

There are two torsion-free connections, one

compatible with the unique local metric:

g(0p @ 0p) =1

The flip: or = 1; the covariant derivative is real
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Represent R; on a Hilbert space R, = {|k)} by
zlk) = q¢"|k),  Alk) =1k +1)
The element y has the representation

ylk) = kl|k)

Extend to the differential calculus:

For the two elements dx and dx:
dalk) = ¢ F Ik +1),  dolk) = g"k — 1)

Then #'=1, 6'=1

The drx can be represented by the operator

drz|k) = ¢"(qlk + 1) + |k — 1))

We have placed a bar over the second copy of R,
On R, ® R, we have the representation
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Interpretation of the metric in terms of
observables since we have a representation of x

and drx on the Hilbert space R,

In this representation the distance s along the
‘line’ x is given by the expression

ds(k) = |V di1drz(lk) + k)] = 105(1k) + [K))]

We have used here

gt = g(drx ® drr) = (eRlx)Qg(Q}% ® 6’]1;3)

We find that

ds(k) = || |k) + k) || =1

The ‘space’ is discrete and the spacing between

‘points’ is uniform
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The example Rg:
We set 2% = (z7,y,27), h=,q—-1/\/q

The defining relations are
T y=qyr ,
vty =q lya”,
2, 27] = hy?
The metric matrix is given by g;; = g" with

0 O 1/\/5
gij = 0 1 0
va 0 0

By direct calculation one finds that
Ptabcdecgd _ 07 Psabcdeced — 0

Therefore
Pabcd — P(a)abcd
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Consider the elements A, € R} with
A_ = +h tgAy~taT,
Ao = —h_l\/@/\y_lr,
Ay = —h 1Ay~ la~

The e, = ad A\, are dual to the 6

Commutation relations identical to those of x:
A_Ag = qAoA_,
ApAo = ¢ ' AoAg,
A, A-] = h(Ao)?

These equations can be rewritten more compactly

in the form
P® A\ =0

This is the consistancy relation of the frame
formalism with C%,. =0, F,, =0
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Example: the Lobachevsky plane
Let V ={(z,7) e R?* | > 0}

A moving frame is given by

o' = g~ ldz, 6% =g 'dy, ds* =g *(dz* + dj?)

Introduce Aj;, with hermitian generators (z,y) and

relation

A real frame is given by
6! =y~ ldz, 6% =y ldy
The structure of Q*(.A) is given by
(61)? =0, (0% =0,  0'6%+0%0' =0

This algebra and differential calculus are invariant

under the coaction of the Jordanian deformation
of SLo; Killing: si(2,R)
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Metric: g(6* ® 6°) = ¢g%°

The unique torsion-free, metric-compatible linear

connection:

Do = 6 @ 6%, D#? = —6' @ 6*

The curvature map becomes

Curv(6') = 0'0° ® 62, Curv(6?) = —6'6* @ 6*

Noncommutative Lobachevsky: Ri212 = —1

Representation: introduce (&,n) with [£,7n] = 2ih
Express: x = &n —ih, y=~&

Find a representation of & and 7

Define A =¢e®, g=e2"

Then yA = qAy , which defines Ré with another

differential calculus
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