Algebraic Bethe Ansatz for deformed Gaudin model

Nenad Manojlović

Group of Mathematical Physics, University of Lisbon Department of Mathematics, University of Algarve

Gravity: New ideas for unsolved problems In honour of 67th birthday of Milutin Blagojević September 2011, Divčibare, Serbia

Outline

(1) Introduction

- Quantum Integrable Systems
- Gaudin Models
- Quantum Inverse Scattering Method
- Alaebraic Bethe Ansatz

Outline

(1) Introduction

- Quantum Integrable Systems
- Gaudin Models
- Quantum Inverse Scattering Method
(2) Deformed Gaudin Model
- Classical r-matrix
- Sklyanin Bracket and Gaudin Algebra
- Algebraic Bethe Ansatz

Outline

(1) Introduction

- Quantum Integrable Systems
- Gaudin Models
- Quantum Inverse Scattering Method
(2) Deformed Gaudin Model
- Classical r-matrix
- Sklyanin Bracket and Gaudin Algebra
- Algebraic Bethe Ansatz
(3) Conclusions
- Summary
- Outlook

Outline

(1) Introduction

- Quantum Integrable Systems
- Gaudin Models
- Quantum Inverse Scattering MethodDeformed Gaudi' Mode'
- Classical r-matrix
- Sklyanin Bracket and Gaudin Algebra
- Algebraic Bethe Ansatz
(3) Conclusions
- Summary
- Outlook

Quantum Integrable Systems

- In the framework of the quantum inverse scattering method (QISM) integrable systems can be classified by underlying dynamical symmetry algebras.

Quantum Integrable Systems

- In the framework of the quantum inverse scattering method (QISM) integrable systems can be classified by underlying dynamical symmetry algebras.

Quantum Integrable Systems

- In the framework of the quantum inverse scattering method (QISM) integrable systems can be classified by underlying dynamical symmetry algebras.
- More sophisticated solvable models correspond to Yangians, quantum affine algebras, elliptic quantum groups, etc.

Quantum Integrable Systems

- In the framework of the quantum inverse scattering method (QISM) integrable systems can be classified by underlying dynamical symmetry algebras.
- More sophisticated solvable models correspond to Yangians, quantum affine algebras, elliptic quantum groups, etc.

Quantum Integrable Systems

- In the framework of the quantum inverse scattering method (QISM) integrable systems can be classified by underlying dynamical symmetry algebras.
- More sophisticated solvable models correspond to Yangians, quantum affine algebras, elliptic quantum groups, etc.

Spin systems

Model	Quantum $R(\lambda, \eta)$-matrix	Algebra
XXX	rational	Yangian $\mathcal{Y}(s /(2))$
XXZ	trigonometric	quantum affine algebra $\mathcal{U}_{q}(\hat{s} /(2))$
XYZ	elliptic	elliptic quantum group $\mathcal{E}_{\tau, \eta}(s /(2))$

Outline

(1) Introduction

- Quantum Integrable Systems
- Gaudin Models
- Quantum Inverse Scattering MethodDeformed Gaudin Model
- Classical r-matrix
- Sklyanin Bracket and Gaudin Algebra
- Algebraic Bethe Ansatz
(3) Conclusions
- Summary
- Outlook

Gaudin Models

- In this sense, one could say that the Gaudin models are the simplest quantum solvable systems being related to classical r-matrices.

Gaudin Models

- In this sense, one could say that the Gaudin models are the simplest quantum solvable systems being related to classical r-matrices.

Gaudin Models

- In this sense, one could say that the Gaudin models are the simplest quantum solvable systems being related to classical r-matrices.
- Gaudin models can be seen as a semi-classical limit of the quantum spin systems

$$
R(\lambda ; \eta)=I+\eta r(\lambda)+\mathcal{O}\left(\eta^{2}\right) .
$$

Gaudin Models

- In this sense, one could say that the Gaudin models are the simplest quantum solvable systems being related to classical r-matrices.
- Gaudin models can be seen as a semi-classical limit of the quantum spin systems

$$
R(\lambda ; \eta)=I+\eta r(\lambda)+\mathcal{O}\left(\eta^{2}\right) .
$$

Gaudin Models

- In this sense, one could say that the Gaudin models are the simplest quantum solvable systems being related to classical r-matrices.
- Gaudin models can be seen as a semi-classical limit of the quantum spin systems

$$
R(\lambda ; \eta)=I+\eta r(\lambda)+\mathcal{O}\left(\eta^{2}\right) .
$$

- Gaudin Hamiltonians are related to classical r-matrix

$$
H^{(a)}=\sum_{b \neq a} r_{a b}\left(z_{a}-z_{b}\right)
$$

Gaudin Models

- In this sense, one could say that the Gaudin models are the simplest quantum solvable systems being related to classical r-matrices.
- Gaudin models can be seen as a semi-classical limit of the quantum spin systems

$$
R(\lambda ; \eta)=I+\eta r(\lambda)+\mathcal{O}\left(\eta^{2}\right) .
$$

- Gaudin Hamiltonians are related to classical r-matrix

$$
H^{(a)}=\sum_{b \neq a} r_{a b}\left(z_{a}-z_{b}\right)
$$

Gaudin Models

- In this sense, one could say that the Gaudin models are the simplest quantum solvable systems being related to classical r-matrices.
- Gaudin models can be seen as a semi-classical limit of the quantum spin systems

$$
R(\lambda ; \eta)=I+\eta r(\lambda)+\mathcal{O}\left(\eta^{2}\right) .
$$

- Gaudin Hamiltonians are related to classical r-matrix

$$
H^{(a)}=\sum_{b \neq a} r_{a b}\left(z_{a}-z_{b}\right) .
$$

- Richardson Hamiltonian and Knizhnik-Zamolodchikov equations.

Gaudin Models

- In this sense, one could say that the Gaudin models are the simplest quantum solvable systems being related to classical r-matrices.
- Gaudin models can be seen as a semi-classical limit of the quantum spin systems

$$
R(\lambda ; \eta)=I+\eta r(\lambda)+\mathcal{O}\left(\eta^{2}\right) .
$$

- Gaudin Hamiltonians are related to classical r-matrix

$$
H^{(a)}=\sum_{b \neq a} r_{a b}\left(z_{a}-z_{b}\right) .
$$

- Richardson Hamiltonian and Knizhnik-Zamolodchikov equations.

Gaudin Models

- In this sense, one could say that the Gaudin models are the simplest quantum solvable systems being related to classical r-matrices.
- Gaudin models can be seen as a semi-classical limit of the quantum spin systems

$$
R(\lambda ; \eta)=I+\eta r(\lambda)+\mathcal{O}\left(\eta^{2}\right) .
$$

- Gaudin Hamiltonians are related to classical r-matrix

$$
H^{(a)}=\sum_{b \neq a} r_{a b}\left(z_{a}-z_{b}\right) .
$$

- Richardson Hamiltonian and Knizhnik-Zamolodchikov equations.

Outline

(1) Introduction

- Quantum Integrable Systems
- Gaudin Models
- Quantum Inverse Scattering MethodDeformed Gaudin Model
- Classical r-matrix
- Sklyanin Bracket and Gaudin Algebra
- Algebraic Bethe AnsatzConclusions
- Summary
- Outlook

Yang-Baxter Equation

- Starting with a quantum R-matrix, i.e. a particular solution of the Yang-Baxter equation

$$
R_{12}(\lambda-\mu) R_{13}(\lambda-\nu) R_{23}(\mu-\nu)=R_{23}(\mu-\nu) R_{13}(\lambda-\nu) R_{12}(\lambda-\mu)
$$

Yang-Baxter Equation

- Starting with a quantum R-matrix, i.e. a particular solution of the Yang-Baxter equation

$$
R_{12}(\lambda-\mu) R_{13}(\lambda-\nu) R_{23}(\mu-\nu)=R_{23}(\mu-\nu) R_{13}(\lambda-\nu) R_{12}(\lambda-\mu)
$$

Yang-Baxter Equation

- Starting with a quantum R-matrix, i.e. a particular solution of the Yang-Baxter equation
$R_{12}(\lambda-\mu) R_{13}(\lambda-\nu) R_{23}(\mu-\nu)=R_{23}(\mu-\nu) R_{13}(\lambda-\nu) R_{12}(\lambda-\mu)$
- one obtains the L-operator corresponding to each site of the chain

$$
L_{o a}\left(\lambda-z_{a}\right)=R_{o a}\left(\lambda-z_{a}\right)
$$

Yang-Baxter Equation

- Starting with a quantum R-matrix, i.e. a particular solution of the Yang-Baxter equation
$R_{12}(\lambda-\mu) R_{13}(\lambda-\nu) R_{23}(\mu-\nu)=R_{23}(\mu-\nu) R_{13}(\lambda-\nu) R_{12}(\lambda-\mu)$
- one obtains the L-operator corresponding to each site of the chain

$$
L_{o a}\left(\lambda-z_{a}\right)=R_{o a}\left(\lambda-z_{a}\right)
$$

Yang-Baxter Equation

- Starting with a quantum R-matrix, i.e. a particular solution of the Yang-Baxter equation
$R_{12}(\lambda-\mu) R_{13}(\lambda-\nu) R_{23}(\mu-\nu)=R_{23}(\mu-\nu) R_{13}(\lambda-\nu) R_{12}(\lambda-\mu)$
- one obtains the L-operator corresponding to each site of the chain

$$
L_{o a}\left(\lambda-z_{a}\right)=R_{o a}\left(\lambda-z_{a}\right)
$$

- the corresponding T-matrix

$$
T\left(\lambda ;\left\{z_{a}\right\}_{1}^{N}\right)=L_{0 N}\left(\lambda-z_{N}\right) \ldots L_{01}\left(\lambda-z_{1}\right)=\prod_{\substack{a=1 \\ \leftarrow}}^{N} L_{o a}\left(\lambda-z_{a}\right)
$$

Yang-Baxter Equation

- Starting with a quantum R-matrix, i.e. a particular solution of the Yang-Baxter equation
$R_{12}(\lambda-\mu) R_{13}(\lambda-\nu) R_{23}(\mu-\nu)=R_{23}(\mu-\nu) R_{13}(\lambda-\nu) R_{12}(\lambda-\mu)$
- one obtains the L-operator corresponding to each site of the chain

$$
L_{o a}\left(\lambda-z_{a}\right)=R_{o a}\left(\lambda-z_{a}\right)
$$

- the corresponding T-matrix

$$
T\left(\lambda ;\left\{z_{a}\right\}_{1}^{N}\right)=L_{0 N}\left(\lambda-z_{N}\right) \ldots L_{01}\left(\lambda-z_{1}\right)=\prod_{\substack{a=1 \\ \leftarrow}}^{N} L_{o a}\left(\lambda-z_{a}\right)
$$

Yang-Baxter Equation

- Starting with a quantum R-matrix, i.e. a particular solution of the Yang-Baxter equation
$R_{12}(\lambda-\mu) R_{13}(\lambda-\nu) R_{23}(\mu-\nu)=R_{23}(\mu-\nu) R_{13}(\lambda-\nu) R_{12}(\lambda-\mu)$
- one obtains the L-operator corresponding to each site of the chain

$$
L_{o a}\left(\lambda-z_{a}\right)=R_{o a}\left(\lambda-z_{a}\right)
$$

- the corresponding T-matrix

$$
T\left(\lambda ;\left\{z_{a}\right\}_{1}^{N}\right)=L_{0 N}\left(\lambda-z_{N}\right) \ldots L_{01}\left(\lambda-z_{1}\right)=\prod_{\substack{a=1 \\ \leftarrow}}^{N} L_{o a}\left(\lambda-z_{a}\right)
$$

Deformed Gaudin Model

Conclusions

RTT-relations and ABA

- Faddeev-Reshetikhin-Takhtajan (FRT) relations

$$
R_{12}(\lambda-\mu) T_{1}(\lambda) T_{2}(\mu)=T_{2}(\mu) T_{1}(\lambda) R_{12}(\lambda-\mu)
$$

Conclusions

RTT-relations and ABA

- Faddeev-Reshetikhin-Takhtajan (FRT) relations

$$
R_{12}(\lambda-\mu) T_{1}(\lambda) T_{2}(\mu)=T_{2}(\mu) T_{1}(\lambda) R_{12}(\lambda-\mu)
$$

RTT-relations and ABA

- Faddeev-Reshetikhin-Takhtajan (FRT) relations

$$
R_{12}(\lambda-\mu) T_{1}(\lambda) T_{2}(\mu)=T_{2}(\mu) T_{1}(\lambda) R_{12}(\lambda-\mu)
$$

- transfer matrix

$$
t(\lambda)=\operatorname{tr} T\left(\lambda ;\left\{z_{a}\right\}_{1}^{N}\right)
$$

generates an Abelian subalgebra $t(\lambda) t(\mu)=t(\mu) t(\lambda)$.

RTT-relations and ABA

- Faddeev-Reshetikhin-Takhtajan (FRT) relations

$$
R_{12}(\lambda-\mu) T_{1}(\lambda) T_{2}(\mu)=T_{2}(\mu) T_{1}(\lambda) R_{12}(\lambda-\mu)
$$

- transfer matrix

$$
t(\lambda)=\operatorname{tr} T\left(\lambda ;\left\{z_{a}\right\}_{1}^{N}\right)
$$

generates an Abelian subalgebra $t(\lambda) t(\mu)=t(\mu) t(\lambda)$.

RTT-relations and ABA

- Faddeev-Reshetikhin-Takhtajan (FRT) relations

$$
R_{12}(\lambda-\mu) T_{1}(\lambda) T_{2}(\mu)=T_{2}(\mu) T_{1}(\lambda) R_{12}(\lambda-\mu)
$$

- transfer matrix

$$
t(\lambda)=\operatorname{tr} T\left(\lambda ;\left\{z_{a}\right\}_{1}^{N}\right)
$$

generates an Abelian subalgebra $t(\lambda) t(\mu)=t(\mu) t(\lambda)$.

- Algebraic Bethe Ansatz, spectrum, Bethe vectors.

RTT-relations and ABA

- Faddeev-Reshetikhin-Takhtajan (FRT) relations

$$
R_{12}(\lambda-\mu) T_{1}(\lambda) T_{2}(\mu)=T_{2}(\mu) T_{1}(\lambda) R_{12}(\lambda-\mu)
$$

- transfer matrix

$$
t(\lambda)=\operatorname{tr} T\left(\lambda ;\left\{z_{a}\right\}_{1}^{N}\right)
$$

generates an Abelian subalgebra $t(\lambda) t(\mu)=t(\mu) t(\lambda)$.

- Algebraic Bethe Ansatz, spectrum, Bethe vectors.

RTT-relations and ABA

- Faddeev-Reshetikhin-Takhtajan (FRT) relations

$$
R_{12}(\lambda-\mu) T_{1}(\lambda) T_{2}(\mu)=T_{2}(\mu) T_{1}(\lambda) R_{12}(\lambda-\mu)
$$

- transfer matrix

$$
t(\lambda)=\operatorname{tr} T\left(\lambda ;\left\{z_{a}\right\}_{1}^{N}\right)
$$

generates an Abelian subalgebra $t(\lambda) t(\mu)=t(\mu) t(\lambda)$.

- Algebraic Bethe Ansatz, spectrum, Bethe vectors.

RTT-relations and ABA

Gaudin models can be considered as the semi-classical limit of the quantum spin systems

- $R(\lambda ; \eta)=I+\eta r(\lambda)+\mathcal{O}\left(\eta^{2}\right)$

RTT-relations and ABA

Gaudin models can be considered as the semi-classical limit of the quantum spin systems

- $R(\lambda ; \eta)=I+\eta r(\lambda)+\mathcal{O}\left(\eta^{2}\right)$

RTT-relations and ABA

Gaudin models can be considered as the semi-classical limit of the quantum spin systems

- $R(\lambda ; \eta)=I+\eta r(\lambda)+\mathcal{O}\left(\eta^{2}\right)$
- $T(\lambda ; \eta)=I+\eta L(\lambda)+\mathcal{O}\left(\eta^{2}\right)$

RTT-relations and ABA

Gaudin models can be considered as the semi-classical limit of the quantum spin systems

- $R(\lambda ; \eta)=I+\eta r(\lambda)+\mathcal{O}\left(\eta^{2}\right)$
- $T(\lambda ; \eta)=I+\eta L(\lambda)+\mathcal{O}\left(\eta^{2}\right)$

Deformed Gaudin Model

Conclusions

RTT-relations and ABA

Gaudin models can be considered as the semi-classical limit of the quantum spin systems

- $R(\lambda ; \eta)=I+\eta r(\lambda)+\mathcal{O}\left(\eta^{2}\right)$
- $T(\lambda ; \eta)=I+\eta L(\lambda)+\mathcal{O}\left(\eta^{2}\right)$
- RTT \Rightarrow Sklyanin bracket

$$
[\underset{1}{L}(\lambda), \underset{2}{L}(\mu)]=-\left[r_{12}(\lambda-\mu), \underset{1}{L}(\lambda)+\underset{2}{L}(\mu)\right]
$$

Deformed Gaudin Model

Conclusions

RTT-relations and ABA

Gaudin models can be considered as the semi-classical limit of the quantum spin systems

- $R(\lambda ; \eta)=I+\eta r(\lambda)+\mathcal{O}\left(\eta^{2}\right)$
- $T(\lambda ; \eta)=I+\eta L(\lambda)+\mathcal{O}\left(\eta^{2}\right)$
- RTT \Rightarrow Sklyanin bracket

$$
[\underset{1}{L}(\lambda), \underset{2}{L}(\mu)]=-\left[r_{12}(\lambda-\mu), \underset{1}{L}(\lambda)+\underset{2}{L}(\mu)\right]
$$

Deformed Gaudin Model

Conclusions

RTT-relations and ABA

Gaudin models can be considered as the semi-classical limit of the quantum spin systems

- $R(\lambda ; \eta)=I+\eta r(\lambda)+\mathcal{O}\left(\eta^{2}\right)$
- $T(\lambda ; \eta)=I+\eta L(\lambda)+\mathcal{O}\left(\eta^{2}\right)$
- RTT \Rightarrow Sklyanin bracket

$$
[\underset{1}{L}(\lambda), \underset{2}{L}(\mu)]=-\left[r_{12}(\lambda-\mu), \underset{1}{L}(\lambda)+\underset{2}{L}(\mu)\right]
$$

Outline

(9) Introduction

- Quantum Integrable Systems
- Gaudin Models
- Quantum Inverse Scattering Method
(2) Deformed Gaudin Model
- Classical r-matrix
- Sklyanin Bracket and Gaudin Algebra
- Algebraic Bethe Ansatz
(3) Conclusions
- Summary
- Outlook

$s l_{2}$-invariant r-matrix

Using the standard $s l_{2}$ generators $\left(h, X^{ \pm}\right)$

$$
\left[h, X^{ \pm}\right]= \pm 2 X^{ \pm}, \quad\left[X^{+}, X^{-}\right]=h
$$

and the quadratic tensor Casimir of $\mathrm{s} / 2$

$$
c_{2}^{\otimes}=h \otimes h+2\left(X^{+} \otimes X^{-}+X^{-} \otimes X^{+}\right)
$$

s_{2}-invariant r-matrix

Using the standard $s l_{2}$ generators $\left(h, X^{ \pm}\right)$

$$
\left[h, X^{ \pm}\right]= \pm 2 X^{ \pm}, \quad\left[X^{+}, X^{-}\right]=h
$$

and the quadratic tensor Casimir of $\mathrm{s} / 2$

$$
c_{2}^{\otimes}=h \otimes h+2\left(X^{+} \otimes X^{-}+X^{-} \otimes X^{+}\right)
$$

one can write the $s l_{2}$-invariant r-matrix

$$
r(\lambda-\mu)=\frac{c_{2}^{\otimes}}{\lambda-\mu} .
$$

sler r-matrix with a Jordanian deformation

The $s l_{2}$-invariant r-matrix with an extra Jordanian term is

$$
r_{\xi}^{J}(\mu, \nu)=\frac{c_{2}^{\otimes}}{\mu-\nu}+\xi\left(h \otimes X^{+}-X^{+} \otimes h\right)
$$

It can be obtained as the semi-classical limit of the Yang R-matrix twisted by the Jordanian twist element

$$
\mathcal{F}=\exp \left(h \otimes \ln \left(1+\theta X^{+}\right)\right) \in U(s /(2)) \otimes U(s /(2))
$$

which satisfies the Drinfeld twist equation.

Deformed $s l_{2} r$-matrix

We will consider the $s l_{2}$-invariant r-matrix with a deformation depending on the spectral parameters

$$
r_{\xi}(\lambda, \mu)=\frac{c_{2}^{\otimes}}{\lambda-\mu}+\xi\left(h \otimes\left(\mu X^{+}\right)-\left(\lambda X^{+}\right) \otimes h\right)
$$

Deformed $s l_{2} r$-matrix

We will consider the $s l_{2}$-invariant r-matrix with a deformation depending on the spectral parameters

$$
r_{\xi}(\lambda, \mu)=\frac{c_{2}^{\otimes}}{\lambda-\mu}+\xi\left(h \otimes\left(\mu X^{+}\right)-\left(\lambda X^{+}\right) \otimes h\right) .
$$

The matrix form of $r_{\xi}(\lambda, \mu)$ in the fundamental representation of $s l_{2}$ is given explicitly by

$$
r_{\xi}(\lambda, \mu)=\left(\begin{array}{cccc}
\frac{1}{\lambda-\mu} & \mu \xi & -\lambda \xi & 0 \\
0 & -\frac{1}{\lambda-\mu} & \frac{2}{\lambda-\mu} & \lambda \xi \\
0 & \frac{2}{\lambda-\mu} & -\frac{1}{\lambda-\mu} & -\mu \xi \\
0 & 0 & 0 & \frac{1}{\lambda-\mu}
\end{array}\right)
$$

here $\lambda, \mu \in \mathbb{C}$ are the so-called spectral parameters and $\xi \in \mathbb{C}$ is a deformation parameter.

Outline

(9) Introduction

- Quantum Integrable Systems
- Gaudin Models
- Quantum Inverse Scattering Method
(2) Deformed Gaudin Model
- Classical r-matrix
- Sklyanin Bracket and Gaudin Algebra
- Algebraic Bethe Ansatz
(3) Conclusions
- Summary
- Outlook

L-operator

The next step is to introduce the L-operator of the Gaudin model

$$
L(\lambda)=\left(\begin{array}{cc}
h(\lambda) & 2 X^{-}(\lambda) \\
2 X^{+}(\lambda) & -h(\lambda)
\end{array}\right)
$$

the entries are given by

$$
\begin{gathered}
h(\lambda)=\sum_{a=1}^{N}\left(\frac{h_{a}}{\lambda-z_{a}}+\xi z_{a} X_{a}^{+}\right), \\
X^{-}(\lambda)=\sum_{a=1}^{N}\left(\frac{X_{a}^{-}}{\lambda-z_{a}}-\frac{\xi}{2} \lambda h_{a}\right), X^{+}(\lambda)=\sum_{a=1}^{N} \frac{X_{a}^{+}}{\lambda-z_{a}},
\end{gathered}
$$

L-operator

The next step is to introduce the L-operator of the Gaudin model

$$
L(\lambda)=\left(\begin{array}{cc}
h(\lambda) & 2 X^{-}(\lambda) \\
2 X^{+}(\lambda) & -h(\lambda)
\end{array}\right)
$$

the entries are given by

$$
\begin{gathered}
h(\lambda)=\sum_{a=1}^{N}\left(\frac{h_{a}}{\lambda-z_{a}}+\xi z_{a} X_{a}^{+}\right), \\
X^{-}(\lambda)=\sum_{a=1}^{N}\left(\frac{X_{a}^{-}}{\lambda-z_{a}}-\frac{\xi}{2} \lambda h_{a}\right), X^{+}(\lambda)=\sum_{a=1}^{N} \frac{X_{a}^{+}}{\lambda-z_{a}},
\end{gathered}
$$

with $h_{a}=\pi_{a}^{\left(\ell_{a}\right)}(h) \in \operatorname{End}\left(V_{a}^{\left(\ell_{a}\right)}\right), X_{a}^{ \pm}=\pi_{a}^{\left(\ell_{a}\right)}\left(X^{ \pm}\right) \in \operatorname{End}\left(V_{a}^{\left(\ell_{a}\right)}\right)$

L-operator

and $\pi_{a}^{\left(\ell_{a}\right)}$ is an irreducible representation of $s l_{2}$ whose representation space is $V_{a}^{\left(\ell_{a}\right)}$ corresponding to the highest weight ℓ_{a} and the highest weight vector $\omega_{a} \in V_{a}^{\left(\ell_{a}\right)}$, i.e.

$$
X_{a}^{+} \omega_{a}=0 \quad \text { and } \quad h_{a} \omega_{a}=\ell_{a} \omega_{a},
$$

at each site $a=1, \ldots, N$. Notice that ℓ_{a} is a nonnegative integer and the $\left(\ell_{a}+1\right)$-dimensional representation space $V_{a}^{\left(\ell_{a}\right)}$ has the natural Hermitian inner product such that

$$
\left(X_{a}^{+}\right)^{*}=X_{a}^{-}, \quad\left(X_{a}^{-}\right)^{*}=X_{a}^{+} \quad \text { and } \quad h_{a}^{*}=h_{a} .
$$

The space of states of the system $\mathcal{H}=V_{1}^{\left(\ell_{1}\right)} \otimes \cdots \otimes V_{N}^{\left(\ell_{N}\right)}$ is naturally equipped with the Hermitian inner product $\langle\cdot \mid \cdot\rangle$ as a tensor product of the spaces $V_{a}^{\left(\ell_{a}\right)}$ for $a=1, \ldots, N$.

Sklyanin Linear Bracket

The L-operator satisfies the so-called Sklyanin linear bracket

$$
\left[\frac{L}{1}(\lambda), L_{2}^{L}(\mu)\right]=-\left[r_{\xi}(\lambda, \mu),{\underset{1}{1}}_{L}(\lambda)+\underset{2}{L}(\mu)\right] .
$$

Both sides of this relation have the usual commutators of the 4×4 matrices $\underset{1}{L}(\lambda)=L(\lambda) \otimes \mathbb{1}, \frac{L}{2}(\mu)=\mathbb{1} \otimes L(\mu)$ and $r_{\xi}(\lambda, \mu)$, where $\mathbb{1}$ is the 2×2 identity matrix.

Gaudin Algebra

The relation above is a compact matrix form of the following commutation relations

$$
\begin{aligned}
{[h(\lambda), h(\mu)] } & =2 \xi\left(\lambda X^{+}(\lambda)-\mu X^{+}(\mu)\right) \\
{\left[X^{-}(\lambda), X^{-}(\mu)\right] } & =-\xi\left(\mu X^{-}(\lambda)-\lambda X^{-}(\mu)\right), \\
{\left[X^{+}(\lambda), X^{-}(\mu)\right] } & =-\frac{h(\lambda)-h(\mu)}{\lambda-\mu}+\xi \mu X^{+}(\lambda), \\
{\left[X^{+}(\lambda), X^{+}(\mu)\right] } & =0, \\
{\left[h(\lambda), X^{-}(\mu)\right] } & =2 \frac{X^{-}(\lambda)-X^{-}(\mu)}{\lambda-\mu}+\xi \mu h(\mu), \\
{\left[h(\lambda), X^{+}(\mu)\right] } & =-2 \frac{X^{+}(\lambda)-X^{+}(\mu)}{\lambda-\mu} .
\end{aligned}
$$

Gaudin Algebra

In order to define a dynamical system besides the algebra of observables a Hamiltonian should be specified.

Gaudin Algebra

In order to define a dynamical system besides the algebra of observables a Hamiltonian should be specified. Due to the Sklyanin linear bracket the generating function

$$
t(\lambda)=\frac{1}{2} \operatorname{tr} L^{2}(\lambda)=h^{2}(\lambda)-2 h^{\prime}(\lambda)+2\left(2 X^{-}(\lambda)+\xi \lambda\right) X^{+}(\lambda)
$$

satisfies

$$
t(\lambda) t(\mu)=t(\mu) t(\lambda)
$$

Gaudin Algebra

In order to define a dynamical system besides the algebra of observables a Hamiltonian should be specified. Due to the Sklyanin linear bracket the generating function

$$
t(\lambda)=\frac{1}{2} \operatorname{tr} L^{2}(\lambda)=h^{2}(\lambda)-2 h^{\prime}(\lambda)+2\left(2 X^{-}(\lambda)+\xi \lambda\right) X^{+}(\lambda)
$$

satisfies

$$
t(\lambda) t(\mu)=t(\mu) t(\lambda)
$$

The pole expansion of the generating function $t(\lambda)$ is

$$
t(\lambda)=\sum_{a=1}^{N}\left(\frac{\ell_{a}\left(\ell_{a}+2\right)}{\left(\lambda-z_{a}\right)^{2}}+\frac{2 H^{(a)}}{\lambda-z_{a}}\right)+2 \xi\left(1-h_{(g \mid)}\right) X_{\left(g^{\prime}\right)}^{+}+\xi^{2} \sum_{a, b=1}^{N} z_{a} z_{b} X_{a}^{+} X_{b}^{+} .
$$

Gaudin Model

The residues of the generating function $t(\lambda)$ at the points $\lambda=z_{a}$, $a=1, \ldots, N$ are the Gaudin Hamiltonians

$$
H^{(a)}=\sum_{b \neq a}^{N}\left(\frac{c_{2}(a, b)}{z_{a}-z_{b}}+\xi\left(z_{b} h_{a} X_{b}^{+}-z_{a} h_{b} X_{a}^{+}\right)\right),
$$

where $c_{2}(a, b)=h_{a} h_{b}+2\left(X_{a}^{+} X_{b}^{-}+X_{a}^{-} X_{b}^{+}\right)$.
for $Y=\left(h, X^{ \pm}\right)$, was used to denote the generators of the so-called global $s l_{2}$ algebra. In the case when $\xi=0$ the global $s l_{2}$ algebra is a symmetry of the system.

Gaudin Model

The residues of the generating function $t(\lambda)$ at the points $\lambda=z_{a}$, $a=1, \ldots, N$ are the Gaudin Hamiltonians

$$
H^{(a)}=\sum_{b \neq a}^{N}\left(\frac{c_{2}(a, b)}{z_{a}-z_{b}}+\xi\left(z_{b} h_{a} X_{b}^{+}-z_{a} h_{b} X_{a}^{+}\right)\right),
$$

where $c_{2}(a, b)=h_{a} h_{b}+2\left(X_{a}^{+} X_{b}^{-}+X_{a}^{-} X_{b}^{+}\right)$. In the constant term of the pole expansion the notation

$$
Y_{\left(g^{\prime}\right)}=\sum_{a=1}^{N} Y_{a}
$$

for $Y=\left(h, X^{ \pm}\right)$, was used to denote the generators of the so-called global s_{2} algebra.

Gaudin Model

The residues of the generating function $t(\lambda)$ at the points $\lambda=z_{a}$, $a=1, \ldots, N$ are the Gaudin Hamiltonians

$$
H^{(a)}=\sum_{b \neq a}^{N}\left(\frac{c_{2}(a, b)}{z_{a}-z_{b}}+\xi\left(z_{b} h_{a} X_{b}^{+}-z_{a} h_{b} X_{a}^{+}\right)\right),
$$

where $c_{2}(a, b)=h_{a} h_{b}+2\left(X_{a}^{+} X_{b}^{-}+X_{a}^{-} X_{b}^{+}\right)$. In the constant term of the pole expansion the notation

$$
Y_{\left.(g)^{\prime}\right)}=\sum_{a=1}^{N} Y_{a}
$$

for $Y=\left(h, X^{ \pm}\right)$, was used to denote the generators of the so-called global $s l_{2}$ algebra. In the case when $\xi=0$ the global $s l_{2}$ algebra is a symmetry of the system.

Gaudin Model

Finally, it is important to notice the following relation

$$
t(\lambda)=t(\lambda)_{0}+2 \xi\left(h(\lambda)_{0} \hat{X}_{\left.(g)^{\prime}\right)}^{+}+X_{\left(g^{\prime}\right)}^{+}-\lambda h_{(g \prime)} X^{+}(\lambda)\right)+\xi^{2}\left(\hat{X}_{\left(g^{\prime}\right)}^{+}\right)^{2},
$$

where $\hat{X}_{(g /)}^{+}=\sum_{a=1}^{N} z_{a} X_{a}^{+}, h(\lambda)_{0}=\left.h(\lambda)\right|_{\xi=0}$ and $t(\lambda)_{0}=\left.t(\lambda)\right|_{\xi=0}$ is the generating function of the integrals of motion in the $s l_{2}$-invariant case.

Outline

(1) Introduction

- Quantum Integrable Systems
- Gaudin Models
- Quantum Inverse Scattering Method
(2) Deformed Gaudin Model
- Classical r-matrix
- Sklyanin Bracket and Gaudin Algebra
- Algebraic Bethe Ansatz
(3) Conclusions
- Summary
- Outlook

Highest Spin Vector Ω_{+}

In the space of states \mathcal{H} the vector

$$
\Omega_{+}=\omega_{1} \otimes \cdots \otimes \omega_{N}
$$

is such that $\left\langle\Omega_{+} \mid \Omega_{+}\right\rangle=1$ and

$$
X^{+}(\lambda) \Omega_{+}=0, \quad h(\lambda) \Omega_{+}=\rho(\lambda) \Omega_{+},
$$

with

$$
\rho(\lambda)=\sum_{a=1}^{N} \frac{\ell_{a}}{\lambda-z_{a}}
$$

Creation Operators

The creation operators used in the $s l_{2}$-invariant Gaudin model coincide with one of the L-matrix entry. However, in the present case these operators are non-homogeneous polynomials of the operator $X^{-}(\lambda)$. It is convenient to define a more general set of operators.

Creation Operators

The creation operators used in the $s l_{2}$-invariant Gaudin model coincide with one of the L-matrix entry. However, in the present case these operators are non-homogeneous polynomials of the operator $X^{-}(\lambda)$. It is convenient to define a more general set of operators. Given integers M and $k \geq 0$, let $\boldsymbol{\mu}=\left\{\mu_{1}, \ldots, \mu_{M}\right\}$ be a set of complex scalars. Define the operators

$$
B_{M}^{(k)}(\boldsymbol{\mu})=\prod_{\substack{n=k \\ \rightarrow}}^{M+k-1}\left(X^{-}\left(\mu_{n-k+1}\right)+n \xi \mu_{n-k+1}\right)
$$

with $B_{0}^{(k)}=1$ and $B_{M}^{(k)}=0$ for $M<0$.

Creation Operators

The commutation relations between the operators $h(\lambda), X^{ \pm}(\lambda)$ and the $B_{M}^{(k)}\left(\mu_{1}, \ldots, \mu_{M}\right)$ operators are given by

$$
\begin{aligned}
h(\lambda) B_{M}^{(k)}(\boldsymbol{\mu})= & B_{M}^{(k)}(\boldsymbol{\mu}) h(\lambda)+2 \sum_{i=1}^{M} \frac{B_{M}^{(k)}\left(\lambda \cup \boldsymbol{\mu}^{(i)}\right)-B_{M}^{(k)}(\boldsymbol{\mu})}{\lambda-\mu_{i}} \\
& +\xi \sum_{i=1}^{M} B_{M-1}^{(k+1)}\left(\boldsymbol{\mu}^{(i)}\right)\left(\mu_{i} \hat{\beta}_{M}\left(\mu_{i} ; \boldsymbol{\mu}^{(i)}\right)-2 k\right) ;
\end{aligned}
$$

Creation Operators

$$
\begin{aligned}
& X^{+}(\lambda) B_{M}^{(k)}(\mu)= B_{M}^{(k)}(\mu) X^{+}(\lambda)-2 \sum_{\substack{i, j=1 \\
i<j}}^{M} \frac{B_{M-1}^{(k+1)}\left(\lambda \cup \mu^{(i, j)}\right)}{\left(\lambda-\mu_{i}\right)\left(\lambda-\mu_{j}\right)} \\
&-\sum_{i=1}^{M} B_{M-1}^{(k+1)}\left(\mu^{(i)}\right)\left(\frac{\hat{\beta}_{M}\left(\lambda ; \mu^{(i)}\right)-\hat{\beta}_{M}\left(\mu_{i} ; \mu^{(i)}\right)}{\lambda-\mu_{i}}-\xi \mu_{i} X^{+}(\lambda)\right) ; \\
& X^{-}(\lambda) B_{M}^{(k)}(\boldsymbol{\mu})=B_{M+1}^{(k)}(\lambda \cup \boldsymbol{\mu})-\xi \sum_{i=1}^{M} \mu_{i} B_{M}^{(k)}\left(\lambda \cup \boldsymbol{\mu}^{(i)}\right) .
\end{aligned}
$$

Creation Operators

The notation used above is the following. Let $\boldsymbol{\mu}=\left\{\mu_{1}, \ldots, \mu_{M}\right\}$ be a set of complex scalars, then

$$
\boldsymbol{\mu}^{\left(i_{1}, \ldots, i_{k}\right)}=\boldsymbol{\mu} \backslash\left\{\mu_{i_{1}}, \ldots, \mu_{i_{k}}\right\}
$$

for any distinct $i_{1}, \ldots, i_{k} \in\{1, \ldots, M\}$.
It is important to notice that the creation operators that yield the Bethe states of the system are the operators $B_{M}^{(0)}(\mu)$, below denoted by $B_{M}(\boldsymbol{\mu})$.
A recursive relation defining the creation operators is

$$
B_{M}(\mu)=B_{M-1}\left(\mu^{(M)}\right)\left(X^{-}\left(\mu_{M}\right)+(M-1) \xi \mu_{M}\right) .
$$

Creation Operators

The commutation relations between the generating function of the integrals of motion $t(\lambda)$ and the B-operators are given by

$$
\begin{align*}
t(\lambda) B_{M}(\boldsymbol{\mu}) & =B_{M}(\boldsymbol{\mu})\left(t(\lambda)-\sum_{i=1}^{M} \frac{4 h(\lambda)}{\lambda-\mu_{i}}+\sum_{i<j}^{M} \frac{8}{\left(\lambda-\mu_{i}\right)\left(\lambda-\mu_{j}\right)}+4 M \xi \lambda X^{+}(\lambda)\right) \\
& +4 \sum_{i=1}^{M} \frac{B_{M}\left(\lambda \cup \mu^{(i)}\right)}{\lambda-\mu_{i}} \hat{\beta}_{M}\left(\mu_{i} ; \boldsymbol{\mu}^{(i)}\right) \\
& +2 \xi \sum_{i=1}^{M} B_{M-1}^{(1)}\left(\boldsymbol{\mu}^{(i)}\right)\left(\mu_{i} h(\lambda)+1\right) \hat{\beta}_{M}\left(\mu_{i} ; \boldsymbol{\mu}^{(i)}\right) \\
& +4 \xi \sum_{\substack{i, j=1 \\
i \neq j}}^{M} \mu_{i} \frac{B_{M-1}^{(1)}\left(\lambda \cup \boldsymbol{\mu}^{(i, j)}\right)-B_{M-1}^{(1)}\left(\boldsymbol{\mu}^{(i)}\right)}{\lambda-\mu_{j}} \hat{\beta}_{M}\left(\mu_{i} ; \boldsymbol{\mu}^{(i)}\right) \\
& +\xi^{2} \sum_{\substack{i, j=1 \\
i \neq j}}^{M} \mu_{i} B_{M-2}^{(2)}\left(\boldsymbol{\mu}^{(i, j)}\right)\left(\mu_{j} \hat{\beta}_{M-1}\left(\mu_{j} ; \boldsymbol{\mu}^{(i, j)}\right)-2\right) \hat{\beta}_{M}\left(\mu_{i} ; \boldsymbol{\mu}^{(i)}\right) \\
& +2 \xi^{2} \sum_{\substack{M=1}}^{M} \mu_{i}^{2} B_{M-1}^{(1)}\left(\boldsymbol{\mu}^{(i)}\right) X^{+}\left(\mu_{i}\right) . \tag{III.1}
\end{align*}
$$

Spectrum and Bethe vectors of the mode

The highest spin vector Ω_{+}is an eigenvector of the operator $t(\lambda)$

$$
t(\lambda) \Omega_{+}=\left(h^{2}(\lambda)-2 h^{\prime}(\lambda)+2\left(2 X^{-}(\lambda)+\xi \lambda\right) X^{+}(\lambda)\right) \Omega_{+}=\Lambda_{0}(\lambda) \Omega_{+}
$$

with the corresponding eigenvalue

$$
\Lambda_{0}(\lambda)=\rho^{2}(\lambda)-2 \rho^{\prime}(\lambda)=\sum_{a=1}^{N} \frac{2}{\lambda-z_{a}}\left(\sum_{b \neq a}^{N} \frac{\ell_{a} \ell_{b}}{z_{a}-z_{b}}\right)+\sum_{a=1}^{N} \frac{\ell_{a}\left(\ell_{a}+2\right)}{\left(\lambda-z_{a}\right)^{2}} .
$$

Spectrum and Bethe Vectors of the Mode

Furthermore, the action of the B-operators on the highest spin vector Ω_{+}yields the Bethe vectors

$$
\Psi_{M}(\boldsymbol{\mu})=B_{M}(\boldsymbol{\mu}) \Omega_{+},
$$

so that

$$
\begin{aligned}
t(\lambda) \Psi_{M}(\boldsymbol{\mu}) & =t(\lambda) B_{M}(\boldsymbol{\mu}) \Omega_{+}=\Lambda_{0}(\lambda) \Psi_{M}(\boldsymbol{\mu})+\left[t(\lambda), B_{M}(\boldsymbol{\mu})\right] \Omega_{+}, \\
& =\Lambda_{M}(\lambda ; \boldsymbol{\mu}) \Psi_{M}(\boldsymbol{\mu})
\end{aligned}
$$

with the eigenvalues

$$
\Lambda_{M}(\lambda ; \boldsymbol{\mu})=\rho_{M}^{2}(\lambda ; \boldsymbol{\mu})-2 \frac{\partial \rho_{M}}{\partial \lambda}(\lambda ; \boldsymbol{\mu}) \quad \text { and } \quad \rho_{M}(\lambda ; \boldsymbol{\mu})=\rho(\lambda)-\sum_{i=1}^{M} \frac{2}{\lambda-\mu_{i}},
$$

Spectrum and Bethe vectors of the mode

provided that the Bethe equations are imposed on the parameters $\boldsymbol{\mu}=\left\{\mu_{1}, \ldots, \mu_{M}\right\}$

$$
\rho_{M}\left(\mu_{i} ; \boldsymbol{\mu}^{(i)}\right)=\sum_{a=1}^{N} \frac{\ell_{a}}{\mu_{i}-z_{a}}-\sum_{j \neq i}^{M} \frac{2}{\mu_{i}-\mu_{j}}=0, \quad i=1, \ldots, M .
$$

Spectrum and Bethe vectors of the mode

provided that the Bethe equations are imposed on the parameters $\boldsymbol{\mu}=\left\{\mu_{1}, \ldots, \mu_{M}\right\}$

$$
\rho_{M}\left(\mu_{i} ; \boldsymbol{\mu}^{(i)}\right)=\sum_{a=1}^{N} \frac{\ell_{a}}{\mu_{i}-z_{a}}-\sum_{j \neq i}^{M} \frac{2}{\mu_{i}-\mu_{j}}=0, \quad i=1, \ldots, M .
$$

The Bethe vectors $\Psi_{M}(\boldsymbol{\mu})$ are eigenvectors of the Gaudin Hamiltonians

$$
H^{(a)} \Psi_{M}(\boldsymbol{\mu})=E_{M}^{(a)} \Psi_{M}(\boldsymbol{\mu})
$$

with the corresponding eigenvalues

$$
E_{M}^{(a)}=\sum_{b \neq a}^{N} \frac{\ell_{a} \ell_{b}}{z_{a}-z_{b}}-\sum_{i=1}^{M} \frac{2 \ell_{a}}{z_{a}-\mu_{i}}
$$

Outline

(1) Introduction

- Quantum Integrable Systems
- Gaudin Models
- Quantum Inverse Scattering Method
(2)

Deformed Gaudin Mode'

- Classical r-matrix
- Sklyanin Bracket and Gaudin Algebra
- Algebraic Bethe Ansatz
(3) Conclusions
- Summary
- Outlook

Summary

- The Gaudin model based on the deformed $s l_{2} r$-matrix is studied.

Summary

- The Gaudin model based on the deformed $s l_{2} r$-matrix is studied.
- The usual Gaudin realization of the model is introduced and the B-operators $B_{M}^{(k)}\left(\mu_{1}, \ldots, \mu_{M}\right)$ are defined as non-homogeneous polynomials of the operator $X^{-}(\lambda)$.

These operators are symmetric functions of their arguments and they satisfy certain recursive relations with explicit dependency on the quasi-momenta

The creation operators $B_{M}\left(\mu_{1}, \ldots, \mu_{M}\right)$ which yield the Bethe vectors form their proper subset.

Summary

- The Gaudin model based on the deformed $s l_{2} r$-matrix is studied.
- The usual Gaudin realization of the model is introduced and the B-operators $B_{M}^{(k)}\left(\mu_{1}, \ldots, \mu_{M}\right)$ are defined as non-homogeneous polynomials of the operator $X^{-}(\lambda)$.
- These operators are symmetric functions of their arguments and they satisfy certain recursive relations with explicit dependency on the quasi-momenta μ_{1}, \ldots, μ_{M}.

Summary

- The Gaudin model based on the deformed $s l_{2} r$-matrix is studied.
- The usual Gaudin realization of the model is introduced and the B-operators $B_{M}^{(k)}\left(\mu_{1}, \ldots, \mu_{M}\right)$ are defined as non-homogeneous polynomials of the operator $X^{-}(\lambda)$.
- These operators are symmetric functions of their arguments and they satisfy certain recursive relations with explicit dependency on the quasi-momenta μ_{1}, \ldots, μ_{M}.
- The creation operators $B_{M}\left(\mu_{1}, \ldots, \mu_{M}\right)$ which yield the Bethe vectors form their proper subset.

Summary

- The Gaudin model based on the deformed $s l_{2} r$-matrix is studied.
- The usual Gaudin realization of the model is introduced and the B-operators $B_{M}^{(k)}\left(\mu_{1}, \ldots, \mu_{M}\right)$ are defined as non-homogeneous polynomials of the operator $X^{-}(\lambda)$.
- These operators are symmetric functions of their arguments and they satisfy certain recursive relations with explicit dependency on the quasi-momenta μ_{1}, \ldots, μ_{M}.
- The creation operators $B_{M}\left(\mu_{1}, \ldots, \mu_{M}\right)$ which yield the Bethe vectors form their proper subset.

Summary

- The Gaudin model based on the deformed $s l_{2} r$-matrix is studied.
- The usual Gaudin realization of the model is introduced and the B-operators $B_{M}^{(k)}\left(\mu_{1}, \ldots, \mu_{M}\right)$ are defined as non-homogeneous polynomials of the operator $X^{-}(\lambda)$.
- These operators are symmetric functions of their arguments and they satisfy certain recursive relations with explicit dependency on the quasi-momenta μ_{1}, \ldots, μ_{M}.
- The creation operators $B_{M}\left(\mu_{1}, \ldots, \mu_{M}\right)$ which yield the Bethe vectors form their proper subset.

Summary

- The commutator of the creation operators with the generating function of the Gaudin model under study is calculated explicitly.

Based on the previous result the spectrum of the system is determined.

Summary

- The commutator of the creation operators with the generating function of the Gaudin model under study is calculated explicitly.
- Based on the previous result the spectrum of the system is determined.

Summary

- The commutator of the creation operators with the generating function of the Gaudin model under study is calculated explicitly.
- Based on the previous result the spectrum of the system is determined.
- It turns out that the spectrum of the system and the corresponding Bethe equations coincide with the ones of the $s l_{2}$-invariant model!

Summary

- The commutator of the creation operators with the generating function of the Gaudin model under study is calculated explicitly.
- Based on the previous result the spectrum of the system is determined.
- It turns out that the spectrum of the system and the corresponding Bethe equations coincide with the ones of the $s l_{2}$-invariant model!
- However, contrary to the $s l_{2}$-invariant case, the generating function of integrals of motion and the corresponding Gaudin Hamiltonians are not Hermitian.

Summary

- The commutator of the creation operators with the generating function of the Gaudin model under study is calculated explicitly.
- Based on the previous result the spectrum of the system is determined.
- It turns out that the spectrum of the system and the corresponding Bethe equations coincide with the ones of the $s l_{2}$-invariant model!
- However, contrary to the $s l_{2}$-invariant case, the generating function of integrals of motion and the corresponding Gaudin Hamiltonians are not Hermitian.

Summary

- The commutator of the creation operators with the generating function of the Gaudin model under study is calculated explicitly.
- Based on the previous result the spectrum of the system is determined.
- It turns out that the spectrum of the system and the corresponding Bethe equations coincide with the ones of the $s l_{2}$-invariant model!
- However, contrary to the $s l_{2}$-invariant case, the generating function of integrals of motion and the corresponding Gaudin Hamiltonians are not Hermitian.

Outline

(1) Introduction

- Quantum Integrable Systems
- Gaudin Models
- Quantum Inverse Scattering MethodDeformed Gaudin Model
- Classical r-matrix
- Sklyanin Bracket and Gaudin Algebra
- Algebraic Bethe Ansatz
(3) Conclusions
- Summary
- Outlook

Outlook

- The explicit form of the generalized Bethe vectors associated to the Jordan canonical form of the generating function $t(\lambda)$ remains an open problem.

> The well known relation between the off-shell Bethe vectors of the Gaudin models related to simple Lie algebras and the solutions of Knizhnik-Zamolodchikov equation also holds for the $K Z$ equation related to the s_{2} classical r-matrix with the jordanian twist. However, in the present case the relation between the Bethe vectors and the solutions of the corresponding $K Z$ is yet to be established.

Outlook

- The explicit form of the generalized Bethe vectors associated to the Jordan canonical form of the generating function $t(\lambda)$ remains an open problem.
- The well known relation between the off-shell Bethe vectors of the Gaudin models related to simple Lie algebras and the solutions of Knizhnik-Zamolodchikov equation also holds for the KZ equation related to the $s l_{2}$ classical r-matrix with the jordanian twist. However, in the present case the relation between the Bethe vectors and the solutions of the corresponding KZ is yet to be established.

Outlook

- The explicit form of the generalized Bethe vectors associated to the Jordan canonical form of the generating function $t(\lambda)$ remains an open problem.
- The well known relation between the off-shell Bethe vectors of the Gaudin models related to simple Lie algebras and the solutions of Knizhnik-Zamolodchikov equation also holds for the KZ equation related to the $s l_{2}$ classical r-matrix with the jordanian twist. However, in the present case the relation between the Bethe vectors and the solutions of the corresponding KZ is yet to be established.

Outlook

- The explicit form of the generalized Bethe vectors associated to the Jordan canonical form of the generating function $t(\lambda)$ remains an open problem.
- The well known relation between the off-shell Bethe vectors of the Gaudin models related to simple Lie algebras and the solutions of Knizhnik-Zamolodchikov equation also holds for the KZ equation related to the $s l_{2}$ classical r-matrix with the jordanian twist. However, in the present case the relation between the Bethe vectors and the solutions of the corresponding KZ is yet to be established.

Our publications

P. P. Kulish and N. Manojlović

Creation operators and Bethe vectors of the osp(1|2) Gaudin model
J. Math. Phys. Vol. 42 No. 10 (2001) 4757-4778.

Trigonometric osp(1|2) Gaudin model
\square
sl(2) Gaudin models with Jordanian twist

Our publications

國 P. P. Kulish and N. Manojlović
Creation operators and Bethe vectors of the osp(1|2) Gaudin model
J. Math. Phys. Vol. 42 No. 10 (2001) 4757-4778.
(國 P. P. Kulish and N. Manojlović
Trigonometric osp(1|2) Gaudin model J. Math. Phys. Vol. 44 No. 2 (2003) 676-700.
sl(2) Gaudin models with Jordanian twist

Algebraic Bethe Ansatz for deformed Gaudin model

Our publications

國 P. P. Kulish and N. Manojlović
Creation operators and Bethe vectors of the osp(1|2) Gaudin model
J. Math. Phys. Vol. 42 No. 10 (2001) 4757-4778.

國 P. P. Kulish and N. Manojlović
Trigonometric osp(1|2) Gaudin model
J. Math. Phys. Vol. 44 No. 2 (2003) 676-700.N. Cirilo António and N. Manojlović
sl(2) Gaudin models with Jordanian twist
J. Math. Phys. Vol. 46 No. 10 (2005) 102701.

Algebraic Bethe Ansatz for deformed Gaudin model

Our publications

國 P. P. Kulish and N. Manojlović
Creation operators and Bethe vectors of the osp(1|2) Gaudin model
J. Math. Phys. Vol. 42 No. 10 (2001) 4757-4778.

國 P. P. Kulish and N. Manojlović
Trigonometric osp(1|2) Gaudin model
J. Math. Phys. Vol. 44 No. 2 (2003) 676-700.
(N. Cirilo António and N. Manojlović
sl(2) Gaudin models with Jordanian twist
J. Math. Phys. Vol. 46 No. 10 (2005) 102701.
N. Cirilo António, N. Manojlović and A. Stolin Algebraic Bethe Ansatz for deformed Gaudin model to appear in J. Math. Phys. Vol. 52 No. 10 (2011)

