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1. Introduction

GR was originally formulated as a dynamical theory of metrics on a spacetime manifold,
and it turned out that for a non-perturbative quantization it is more advantegous to
reformulate it as a theory of connections, see [1].

More precisely, GR can be represented as a constrained BF theory, see [2], and this
approach led to formulation of spin foam models of quantum GR, see [3, 1]. The EPRL/FK
class of spin foam models [4, 5] allows for a construction of finite QG transition amplitudes
[8, 9, 10] and the corresponding classical limit is GR [11]. However, the absence of the
tetrads from the theory makes it difficult to couple massive fermions [6] as well as the
gauge fields [7], so that there is a need for a BF-type reformulation of GR which will
include the tetrads.

One way to do this is to introduce the cosmological constant and represent GR as
a BF theory for the AdS/dS group with a symmetry breaking term [12]. However, the
cosponding spin foam perturbation theory is difficult to formulate [13], since the symmetry
breaking term is the perturbation, and there is no efficient mathematical formalism to
calculate the corrections.

Another possible approach is to use the Poincare group, since GR can be represented
as a gauge theory for the Poincare group, see [14]. However, the transformation law
for the tetrads under the local translations does not coincide with the diffeomorphism
transformations. Although the diffeomorphisms transformations of the tetrads can be
represented as suitably restricted local translations, it is not clear how to implement
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this restriction in the corresponding BF-theory type reformulation of the Einstein-Cartan
action.

In this paper we will show that this problem can be resolved by using the BF theory
for 2-groups, also known as BFCG theory, see [15, 16]. The 2-groups are category theory
generalizations of the usual groups and the Poincare group can be naturally embedded
into a 2-group, see [17]. We will show that GR can be represented as a constrained BFCG
theory for the Poincare 2-group (in analogy with the result that GR is the constrained
BF theory for the Lorentz group).

2. Poincare 2-group and GR

One way to generalize the notion of the group is to use the category theory. A category
consists of objects and maps between the objects (called morphisms) such that natural
composition rules between the morphisms are satisfied, see [17]. A 2-category consists of
objects, morphisms and maps between morphisms (called 2-morphisms) such that natural
composition rules are satisfied. A group is then a category with one object where all
morphisms are invertible. Similarly, a two-group is a 2-category with one object where
all morphisms are invertible. This abstract definition leads to a concrete realization of a
2-group which is given by a crossed module (G,H, ∂, .). This is a pair of groups G and H,
such that ∂ : H → G is a homomorphism and . is an action of G on H such that certain
properties are satisfied, which are direct consequences of the categorical structure, see
[17]. A canonical example of a 2-group relevant for physics is the Poincare 2-group, where
G = SO(1, 3), H = R4, ∂ is a trivial homomorphism and . is the usual action of the
Lorentz transformations on the R4 space. The Lorentz group is the group of morphisms,
while the usual Poincare group is the group of 2-morphisms.

One can construct a gauge theory on a 4-manifold M based on a crossed module
(G,H, ∂, .) of Lie groups by using one-forms A, which take values in the Lie algebra g of
G, and 2-forms β, which take values in the Lie algebra h of H [15, 16]. The forms A and
β transform under the usual gauge transformations g : M → G as

A→ g−1Ag + g−1dg , β → g−1 . β , (1)

while the gauge transformations generated by H are given by

A→ A + ∂η , β → β + dη + A ∧. η + η ∧ η , (2)

where η is a one-form taking values in h, see [16]. When the group H is abelian, which
happens in the Poincare 2-group case, then the η∧η term in (2) vanishes, and one obtains
the gauge transformations given in [15] .

The pair (A, β) represents a 2-connection on the 2-bundle associated to the 2-Lie group
(G,H) and the manifold M . The corresponding curvature forms are given by

F = dA+ A ∧ A− ∂β , G = dβ + A ∧. β , (3)

and they transform as

F 7→ g−1Fg , G → g−1 . G , (4)

under the usual gauge transformations, while
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F → F , G → G + F ∧. η , (5)

under the H-gauge transformations.
One can introduce a natural topological gauge theory determined by the vanishing of

the 2-curvature

F = 0 , G = 0 . (6)

These equations can be obtained from the action

S0 =
∫
M
〈B ∧ F〉g + 〈C ∧ G〉h , (7)

where B is a 2-form taking values in g, C is a one-form taking values in h, 〈 , 〉g is a
G-invariant non-degenerate bilinear form in g and 〈 , 〉h is a G-invariant non-degenerate
bilinear form in h. The action (7) is called BFCG action, in analogy with the BF theory
action. The gauge transformations of the Lagrange multiplier fields are given by

B → g−1Bg , C 7→ g−1 . C , (8)

for the usual gauge transformations, while

B → B − [C, η] , C 7→ C , (9)

for the H-gauge transformations.
Let us now examine the case of the Poincare 2-group. In this case A = ωabJab,

β = βaPa, where
J are the generators of the Lorentz group, while P are the generators of R4. Conse-

quently

F = (dωab + ωac ∧ ωcb)Jab = RabJab , G = (dβa + ωab ∧ βb)Pa = ∇βaPa . (10)

The G-gauge transformations are the local Lorentz rotations

ω → g−1ωg + g−1dg , β → g−1 . β , (11)

while the H-gauge transformations are the local translations

δεω = 0 , δεβ
a = dεa + ωab ∧ εb , (12)

where η = εaPa.
The BFCG action then becomes

S0 =
∫
M

(Bab ∧Rab + Ca ∧∇βa) , (13)

where

δεB = 0 , δεC = 0 . (14)

Note that the transformation properties of the one-forms Ca are the same as the
transformation properties of the tetrad one forms ea under the local Lorentz and the
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diffeomorphism transformations. Hence one can identify the C fields with the tetrads and
we write

S0 =
∫
M

(Bab ∧Rab + ea ∧∇βa) . (15)

The action (15) gives a theory of flat metrics, since Rab = 0 implies the vanishing of
the Reimann tensor. In order to obtain GR, we need that the Ricci tensor vanishes. In
the BF theory approach to GR, this problem is resolved by constraining the B field, such
that Bab = εabcdec∧ed. Since in the 2-group formulation the tetrads are explicitly present,
the required constraint is simply

Bab = εabcdec ∧ ed . (16)

Hence the action for GR in the 2-group approach is given by

S =
∫
M

(
Bab ∧Rab + ea ∧∇βa − φab ∧ (Bab − εabcdec ∧ ed)

)
. (17)

The equations of motion are

Rab − φab = 0 (18)

∇βa + 2εabcdφ
bc ∧ ed = 0 (19)

∇Bab − e[a ∧ βb] = 0 (20)

∇ea = 0 (21)

Bab − εabcdec ∧ ed = 0 . (22)

From B = εe ∧ e it follows that ∇B ∝ εe ∧ ∇e, so that ∇B = 0 due to (21). The
equation (20) then implies that e[a ∧ βb] = 0. For invertible tetrads we then obtain β = 0,
so that (18) and (19) imply

εabcdR
bc ∧ ed = 0 . (23)

The equation (23) is the equation of motion for the EC action

SEC =
∫
M
εabcdea ∧ eb ∧Rcd , (24)

for the e variations, while (21) is equivalent to δSEC/δω when the tetrads are invertible.

3. Coupling of matter

Since the tetrads are present in the BFCG action, the coupling of matter fields is essentially
given by the coupling of matter fields in the EC formulation. The only subtlety is in the
coupling of fermions, since their presence introduces a non-zero torsion.

The Dirac action for the fermion field in the EC formulation is given by

SD = iκ1

∫
εabcd e

a ∧ eb ∧ ec ∧ ψ̄
(
γd
↔
d + {ω, γd}+

im

2
ed
)
ψ , (25)

where ω = ωab[γ
a, γb]/8 and κ1 = 8πl2p/3. The δ(SEC +SD)/δω equation gives the torsion

Ta ≡ ∇ea = −κ2sa, where
sa = iεabcd e

b ∧ ec ψ̄γ5γ
dψ ,
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is the spin 2-form, and κ2 = −3κ1/4. Hence in the BFCG formulation we need a term∫
M βa ∧ sa in the action.

Let us consider the action

Sm = S + SD + Sβψ , (26)

where
Sβψ = iκ2

∫
εabcde

a ∧ eb ∧ βc ψ̄γ5γ
dψ .

The equations of motion are

δS

δBab
= Rab − φab = 0 (27)

δS

δea
= −∇βa − εabcdeb ∧

[
2φcd − 3iκ1

2
βcψ̄γ5γ

dψ + 3iκ1e
c ∧ ψ̄

(
γd
→
∇−

←
∇γd +

im

6
ed
)
ψ
]

= 0 ,(28)

δS

δωba
= ∇Bab − e[a ∧ βb] − 2κ2εabcde

c ∧ sd = 0 , (29)

δS

δβa
= ∇ea + κ2sa = 0 , (30)

δS

δφba
= Bab − εabcdec ∧ ed = 0 , (31)

δS

δψ̄
= iκ1εabcde

a ∧ eb ∧
(

2ec ∧ γd∇+
im

2
ec ∧ ed − 3(∇ec)γd − 3

4
βcγ5γ

d
)
ψ = 0 , (32)

From the δ/δφ equation it follows that ∇B ∝ εe∧∇e, so that the δ/δω equation gives

2 εabcde
c ∧

(
∇ed + κ2s

d
)

+ e[a ∧ βb] = 0

which gives e[a ∧ βb] = 0, since the δ/δβ equation is ∇e + κ2s = 0. If the tetrads are
invertible, one then obtains βa = 0, so that the δ/δe equation gives εe ∧ (R − Tψ) = 0,
where Tψ is the energy momentum 2-form of the fermions.

The δ/δψ and δ/δψ̄ equations are related by spinor conjugation. For the invertible
tetrads, using ∇e = −κ2s, the δ/δψ̄ equation reduces to the usual Dirac equation

(iγµ∇µ −m)ψ = 0 , (33)

where γµ = eµaγ
a.

As far as the scalar and YM fields are concerned, they do not couple to ω so that one
simply adds the corresponding EC formalism terms to Sm

Sm → Sm +
∫
M
|e| (gµν∂µΦ∂νΦ + gµνgρσ Tr FµρFνσ) d4x , (34)

where gµν = eaµe
b
νηab.

One can also introduce the Immirzi parameter γ, by adding an additional term Sγ to
the action Sm, where

Sγ = −1

γ

∫
φab∧ ea∧ eb +

iκ2

γ2 + 1

∫
εabcde

a∧ eb∧βcψ̄γ5γ
dψ+

iκ2γ

γ2 + 1

∫
ea∧ eb∧βaψ̄γ5γbψ .
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The resulting equations of motion are equivalent to the equations of motion obtained from
the action SEC + SD + SH , where SH is the Holst term [18]

SH = −2

γ

∫
ea ∧ eb ∧Rab .

The physical motivation for the introduction of the Immirzi parameter lies in the fact
that it is the coupling constant between fermions and torsion, as discussed in detail in
[19, 20].

4. State-sum models

Given the BFCG form of the EC action, one can now proceed to quantize the theory by
using the same approach as in the case of spin foam models: first formulate the state-sum
model for the topological theory given by the action for the unconstrained BFCG theory,
and after that impose the constraint B = εe ∧ e.

In the topological case one starts from the path-integral

Z =
∫
DADβDBDC exp

(
i
∫
M

(〈B ∧ F〉+ 〈C ∧ G〉)
)

=
∫
DADβ δ(F) δ(G) , (35)

see [15].
Let T be a regular triangulation of M , and T ∗ the dual tringulation, then

Z =
∫ ∏

l

dgl

∫ ∏
f

dhf
∏
f

δ(gf )
∏
p

δ(hp) , (36)

where l, f and p denote the 1,2 and 3-cells of T ∗, respectivelly, and one has

gl = exp
(∫

l
A
)
, hf = exp

(∫
f
β
)
.

The group elements gl ∈ G and hf ∈ H represent the corresponding one and 2-
holonomies of A and β, respectively. The group element gf =

∏
l∈∂f gl is the holonomy

along the boundary of f and one has gf ≈ e
∫
f
F

, while hp is the 2-holonomy alonog the
closed surface ∂p, and it is given by

hp =
∏
f∈∂p

h̃f ≈ exp(
∫
p
G) ,

where some of the h̃f are given by gl . hf , where l ∈ p and l /∈ ∂f , while the other h̃f
are equal to hf , see [15] for the case when p is a tetrahedron and see [21] when p is an
arbitrary polyhedron.

In the case of the Poincare 2-group (36) can be written as

Z =
∫ ∏

l

dgl

∫ ∏
f

d4~xf
∏
f

δ(gf )
∏
p

δ(~xp) , (37)
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where ~xp = ~xf + ... + gl~xf ′ and f, ..., f ′ ∈ ∂p. The Lorentz group delta function can be
expanded by using the Plancherel teorem

δ(gf ) =
∑
Λf

dµ(Λf )χ(gf ,Λf ) ,

where Λ = (j, ρ) are the unitary irreducible representations, and dµ is the appropriate
integration measure, see [?], while

δ(~xp) =
1

(2π)4

∫
R4
d4~Lp exp

(
i~xp · ~Lp

)
.

For the sake of simplicity, let us consider the Euclidean case, so that the Poincare 2-
group becomes the Euclidean 2-group. The Lorentz group is then replaced by the SO(4)
group and Λ = (j+, j−) is a pair of SU(2) spins, so that

Z =
∑
Λf

∫ ∏
p

d4~Lp

∫ ∏
l

dgl
∏
f

d4~xf dim Λf χ(Λf , gf )
∏
p

ei~xp·
~Lp . (38)

After integrating ~xf , we obtain

Z =
∑
Λf

∫ ∏
p

d4~Lp

∫ ∏
l

dgl
∏
f

dim Λf χ(Λf , gf )∏
f

δ
(
gl1(p1,f)

~Lp1,f + gl2(p2,f)
~Lp2,f + gl3(p3,f)

~Lp3,f

)
, (39)

where p1, p2 and p3 are the polyhedra which share the face f , and l1, l2 and l3 are the
corresponding dual edges satisfying lk ∈ pk and lk /∈ f .

It is instructive to rewrite (39) by using the simplices of T (M)

Z =
∑
Λ∆

∫ ∏
ε

d4~Lε

∫ ∏
τ

dgτ
∏
∆

dim Λ∆ χ(Λ∆, g∆)∏
∆

δ
(
gτ1(ε1,∆)

~Lε1,∆ + gτ2(ε2,f)
~Lε2,∆ + gτ3(ε3,∆)

~Lε3,∆
)
, (40)

where εk are the edges of ∆ and εk ∈ τk but ∆ /∈ τk. The delta function δ(g1
~L1 + g2

~L2 +

g3
~L3) implies that the norms Lk of the 4-vectors ~Lk satisfy the triangle inequalities. This

implies that Lε can be interpreted as the length of an edge ε.
The state sum (40) can be represented as a categorical state sum for the representations

of the Poincare/Euclidean 2-group. These representations were studied in [22, 23], and in

order to show this, let us write ~Lε = Lε~nε, where ~n is a unit four-vector, so that

Z =
∫ ∏

ε

L3
εdLε

∑
Λ∆,Iτ

W (L,Λ, I) , (41)

where Iτ is the intertwiner for the four Λ of a tetrahedron and∑
I

W (L,Λ, I) =
∫ ∏

ε

dΩε

∫ ∏
τ

dgτ
∏
∆

dim Λ∆ χ(Λ∆, g∆)∏
∆

δ
(
gτ1(ε1,∆)

~Lε1,∆ + gτ2(ε2,f)
~Lε2,∆ + gτ3(ε3,∆)

~Lε3,∆
)
, (42)
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where dΩ is the 3-sphere volume measure.
Given that the iretractable representations of the Euclidean 2-group are classified by

the positive numbers L, see [23], and that the intertwiner for three L-representations is a
pair of SU(2) spins, such that the L satisfy the triangle inequalities, then (41) is exactly
a categorical state-sum for these representations. The form of Z in the Poincare case will
be the same as (41), but the structure of W will be different due to Λ∆ = (j∆, ρ∆).

The state sums/integrals in (41) will be divergent, but what is important is the form
of the 3-complex amplitude W . Given the form of the topological amplitude, one can
then try to implement the constraint B = εe∧ e in order to obtain the state sum for GR,
similarly to what was done in the case of spin foam models. Since the labels Lε can be
interpreted as the lengths of the edges of T (M), then the result of the implementation of
the constraints should be a reduction

Λ∆ → j∆ , Iτ → ιτ ,

where j is an SU(2) spin and ι is an SU(2) intertwiner. We then expect to have

ZGR =
∫ ∏

ε

µ(Lε) dLε
∑
j∆,ιτ

WGR(Lε, j∆, ιτ ) , (43)

where the amplitude WGR has to be such that ZGR is finite and in the classical limit one
obtains GR. For this to happen it is crucial that the large-length asymptotics of W is
given by

WGR(λL, λj, ι) ≈ N(λ)
exp(iλSR(L))

λn
, (44)

for λ→∞, where N is a homogenous function of order zero, n > 0 and SR is the Regge
action, see [11] for the spin-foam case.

Coupling matter in the model (43) will be easier than in the EPRL/FK model, since
the edge lenghts Lε are explicitly present. One can use for the matter amplitudes

Wmatt(L, j) ∝ exp(iS
(matt)
R ) ,

where S
(matt)
R is the matter Regge action. The expressions for Vτ (L) and Vσ(L) which

appear in S
(matt)
R , can be easily obtained, in contrast to the EPRL/FK model, where the

expression for Vσ(j) can be only defined in the limit of large spins j.
As far as the boundary states are concerned, one will have the spin-foam wavefunctions

(instead of spin-network wavefunctions in the spin-foam case) on ∂M = Σ with the labels

(Lε, j∆, ιτ )T (Σ) = (Lf , jl, ιv)T ∗(Σ) .

This is simply the fact that the boundary of a colored 3-complex is a colored 2-complex,
i.e. a spin foam.

5. Conclusions

Categorification of LQG.
Find W and WGR.
Canonical quantization.
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