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I. MEMBRANE DYNAMICS

Let us start with the brief recapitulation of the known results. The p-brane world-sheet

equations are obtained from the covariant conservation equations of fundamental matter

currents: nonsymmetric stress-energy τµ
ν , and spin tensor σλ

µν . In the coordinate basis,

these equations have the form [16]:

(
Dν + T λ

νλ

)
τ ν

µ = τ ν
ρT ρ

µν +
1

2
σνρσRρσµν, (1a)

(
Dν + T λ

νλ

)
σν

ρσ = τρσ − τσρ. (1b)

Here, Dν is the covariant derivative with nonsymmetric connection, T λ
µν is torsion and

Rµ
νρσ stands for curvature. The covariant derivative Dν is assumed to satisfy the metricity

condition. It has been shown in [5] that the conservation equations (1) can be put in the

form

∇ν (θµν −Dµν) =
1

2
σνρλ∇µKρλν, (2)

where θµν stands for the generalized Belinfante tensor

θµν ≡ τ (µν) −∇ρσ
(µν)ρ − 1

2
Kλρ

(µσν)ρλ.
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This way, the conservation equations are rewritten in terms of the Riemannian covariant

derivative ∇µ, and the contortion Kλ
µν ≡ −1

2

(T λ
µν − Tν

λ
µ + Tµν

λ
)
. The notation

Dµν ≡ K [µ
λρσ

ρλν] +
1

2
Kλρ

[µσν]ρλ

is introduced for convenience. In the particle case, this form of the conservation equations

has been used in [17].

In this paper, we are interested in infinitely thin branes, and therefore, we restrict our

analysis to the lowest approximation in the multipole expansion of [3, 4]:

θµν =

∫

M
dp+1ξ

√−γ T µν δ(D)(x− z)√−g
, (3a)

σλµν =

∫

M
dp+1ξ

√−γ Sλµν δ(D)(x− z)√−g
. (3b)

The surface M is defined by the equation xµ = zµ(ξ) where ξa are the surface

coordinates, and T µν(ξ) and Sλµν(ξ) are free coefficients. The induced metric is defined by

γab ≡ gµνu
µ
au

ν
b and uµ

a ≡ ∂zµ/∂ξa
. In [4, 5], the decomposition (3) has been

used as an ansatz for solving the conservation equations (2).

In this paper, we are interested in membranes (p = 2) characterized by maximally sym-

metric distribution of spin. It has already been shown in [6] that such membranes must have

axial spin tensor of the form

Sλµν = s eabcuλ
au

µ
b u

ν
c , (4)
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where eabc is the covariant Levi-Civita symbol, and s is a constant. This leads us to restrict

our considerations to backgrounds with totally antisymmetric torsion. The computations are

straightforward, and have already been done in [6]. They lead to the world-sheet equations

∇a

(
mabubµ

)
=

s

2
uνλρKµνλρ (5a)

and boundary conditions

na

(
mabubµ +

3s

2
eabcKbcµ

) ∣∣∣
∂M

= 0 . (5b)

Here, na is the unit boundary normal, and ∇a stands for the total covariant derivative that

acts on both types of indices [3–5]. The antisymmetric tensor Kµνλρ is defined as

Kµνλρ ≡ ∂µKνλρ − ∂νKλρµ + ∂λKρµν − ∂ρKµνλ ,

while uµνρ ≡ eabcuµ
au

ν
bu

ρ
c , and Kabρ ≡ uµ

au
ν
bKµνρ are introduced for convenience. The coeffi-

cients s and mab are the residual free parameters of the theory.
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II. STRING DYNAMICS

In this section, we shall review the uncompromised results of [7], where dimensional

reduction of a cylindrical membrane has been considered.

The arena for our considerations is a (D + 1)-dimensional spacetime with one small

compact dimension. It is parametrized by the coordinates XM (M = 0, 1, . . . , D), which we

divide into the “observable” coordinates xµ (µ = 0, 1, . . . , D − 1), and the extra periodic

coordinate y. In the limit of small extra dimension, we use the Kaluca-Klein ansatz

∂yKMNL = 0, ∂yGMN = 0 (6)

to model the contortion and metric. For the metric GMN , we shall use the standard decom-

position

GMN =


 gµν + φ aµaν φ aµ

φ aν φ


 , (7)

while the totally antisymmetric contortion KMNL is decomposed as

KMNL =
(
Kµνλ , Kµνy

)
,

with
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Kµνy ≡ kµν ,

Kµνλ ≡ Kµνλ + kµνaλ + kνλaµ + kλµaν .
(8)

With respect to the residual symmetry transformations, the variables Kµνλ and kµν , as well

as gµν and φ, transform as tensors, while aµ transforms as a connection.

Now, we consider a membrane wrapped around the extra compact dimension y. Its

world-sheet XM = ZM(ξA) is denoted by M3, and is chosen in the form

xµ = zµ(ξa), y = ξ2, (9)

where the world-sheet coordinates ξA (A = 0, 1, 2) are divided into ξa (a = 0, 1) and ξ2.

This ansatz reduces the membrane world-sheet tangent vectors UM
A ≡ ∂ZM/∂ξA to Uµ

a =

uµ
a ≡ ∂zµ/∂ξa, Uµ

2 = Uy
a = 0, and Uy

2 = 1. In what follows, we shall refer to xµ = zµ(ξa) as

the string world-sheet, and denote it by M2.

In this section, the dimensional reduction is applied to the membrane equations (5) of

section I. As a first step, the word-sheet equations (5) are rewritten using the (D + 1)-

dimensional notation:

∇A

(
mABUBM

)
=

s

2
UNLRKMNLR , (10a)

NA

(
mABUBM +

3s

2
eABCKBCM

) ∣∣∣
∂M3

= 0 . (10b)

The dimensional reduction of (10) with mAB = TΓAB, where ΓAB ≡ GMNUM
A UN

B stands for

the induced membrane metric, has been studied in [6]. In [7], on the other hand, a more
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general stress-energy tensor has been considered:

mAB = TΓAB + µAB.

To violate the maximal symmetry of the membrane stress-energy mAB = TΓAB in a way

which will preserve the maximal symmetry of the effective string after dimensional reduction,

the additional constraint µab = 0 has been imposed. Thus,

µAB =


 0 a

b ω − 2cac


 . (11)

This specific decomposition ensures tensorial character of the new parameters a(ξ) and

ω(ξ). We shall see later that a and ω are related to the electric and dilatonic charges of the

effective string.

The dimensional reduction of the membrane equations (10) has successfully been done

in [7]. As it turns out, the effective string equations are nicely simplified when expressed in

terms of the rescaled quantities

g̃µν ≡
√

φ gµν , ̃a ≡ φa .

Indeed, in terms of g̃µν and ̃a, the effective string dynamics has the simple form:
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∇̃a̃
a = 0 , (12a)

T ∇̃au
a
µ =

3s

2
ũνλkµνλ − fµν ̃

ν +
ω

2
∂µφ . (12b)

The totally antisymmetric tensor kµνλ is defined as

kµνλ ≡ ∂µkνλ + ∂νkλµ + ∂λkµν ,

while fµν ≡ ∂νaµ − ∂µaν and µ ≡ uµ
a

a
. Similarly, the dimensional

reduction of the boundary conditions (10b) yields

ña̃
a
∣∣
∂M2

= 0 , (13a)

ña

(
Tua

µ + 3s ẽabuν
bkµν

) ∣∣
∂M2

= 0 . (13b)

To summarize, the effective string dynamics is governed by the world-sheet equations

(12), and boundary conditions (13). The constant parameters T and s define maximally

symmetric distribution of stress-energy and spin, but arbitrary ̃a(ξ) and ω(ξ) violate the

string uniformity. While electrically neutral strings (̃a = 0) can easily be made uniform

by imposing the condition ω = const., this is not the case with electrically charged strings

(̃a 6= 0). In what follows, we shall separately analyze these two cases.
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III. ELECTRICALLY NEUTRAL STRING

In this section, we shall restrict our considerations to strings with maximally symmetric

distribution of matter. In the simplest scenario, we simply get rid of the isotropy violating

current ̃a by putting it to zero:

̃a = 0

With this, we are left with three free coefficients to parametrize our string equations. They

define an electrically neutral string with constant tension and spin, and arbitrary dilatonic

charge. In the maximally symmetric case, the charge ω is constrained to have a constant

value, but we shall keep it arbitrary in the forthcoming analysis.

The string dynamics is obtained by substituting ̃a = 0 into (12) and (13). This way, we

obtain the world-sheet equations

T ∇̃au
a
µ =

3s

2
ũνλkµνλ +

ω

2
∂µφ , (14a)

and boundary conditions

ña

(
Tua

µ + 3s ẽabuν
bkµν

) ∣∣
∂M2

= 0 . (14b)

As expected, no coupling to the electromagnetic field is present. An interesting feature of

the obtained dynamics is that the world-sheet projection of the equation (14a) does not
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identically vanish. Instead, it gives the constraint ω uµ
a∂µφ = 0, which reduces to

∂aφ = 0 (15)

in the generic case ω 6= 0. The condition (15) tells us that the string world-sheet is embedded

in a surface of constant φ. Precisely,

electrically neutral string with nontrivial dilatonic charge is

constrained to live in one of the surfaces φ(x) = const.

The choice ω = 0, on the other hand, brings us back to the trivial case µAB = 0, already

considered in [6]. It is characterized by the absence of dilaton coupling.

Let us now construct an action functional for our equations (14). It is immediately seen

that this can not be done without auxiliary fields. Indeed, the string equations that follow

from a reparametrization invariant action must be orthogonal to the world-sheet, which is

not the case with our (14). To solve this problem, we introduce the auxiliary electromagnetic

field Aa(ξ) that exclusively lives on the string world-sheet. The needed action functional

is then searched for in the form

I = T

∫
d2ξ
√−γ

[
1 +

1

2
eab (Bab + ΦFab)

]
, (16)

where γab ≡ Gµν(x)uµ
au

ν
b , Bab ≡ Bµν(x)uµ

au
ν
b and Fab ≡ ∂bAa − ∂aAb.

The external fields Gµν(x), Bµν(x) and Φ(x) are referred to as the target space metric,

antisymmetric field and dilaton, respectively. The action (16) is varied with respect to the

independent variables xµ(ξ) and Aa(ξ). As a result, the world-sheet equations and boundary
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conditions

∇au
a
µ =

1

2
uνλBµνλ +

F

2
∂µΦ , (17a)

na

(
ua

µ + eabuν
bBµν

) ∣∣
∂M2

= 0 , (17b)

and the constraint

∂aΦ = 0 (17c)

are obtained. Here, Bµνλ ≡ ∂µBνλ + ∂νBλµ + ∂λBµν , and F ≡ eabFab. As we can see,

the auxiliary variable Aa remains undetermined, and therefore, the quantity F (ξ) can be

considered a free coefficient of the theory. With this, the equations (17) take the form of

our (14) and (15). Indeed, the identification of external fields

Gµν = g̃µν , Bµν =
3s

T
kµν , Φ = φ , (18)

and the free coefficients F = ω/T establishes the 1− 1 correspondence between the two sets

of equations.

The action functional (16) is not the unique action that governs the dynamics of electri-

cally neutral string with nontrivial dilatonic charge. An attractive possibility is to introduce

the auxiliary metric hab(ξ) along with the auxiliary electromagnetic field Aa(ξ). This

can be done in a variety ways, but we choose the action

I = T

∫
d2ξ
√
−h

[
Gµν(x)uµ

au
ν
bh

ab

+Bµν(x)uµ
au

ν
be

ab + Φ(x)
(
F + R(2)

) ]
, (19)

as it is closest to the string σ-model considered in string theory literature [10–15]. The 2d

curvature R(2) is constructed out of the auxiliary metric hab, and F ≡ eabFab stands

11



for the field strength of the auxiliary electromagnetic field Aa. It is an exclusive feature of

2d spacetimes to allow scalars linear in the electromagnetic field strength.

The action (19) is varied with respect to the independent variables xµ(ξ), hab(ξ) and

Aa(ξ). As a result, the equations that coincide with (17) are obtained. It is only that the role

of the free coefficient F in (17) is now played by the new free coefficient Ω ≡ F +R(2)−∇2 χ.

The coefficient Ω(ξ) is a remnant of the auxiliary variables hab and Aa. In particular, χ stands

for the undetermined conformal factor of the auxiliary metric hab.

The preceding considerations have demonstrated that the action functional (19) correctly

governs the dynamics of electrically neutral effective string in Riemann-Cartan spacetime.

Moreover, this action is seen to share many features with the string σ-model action of [10–

15]. In fact, the two actions differ in one instance only: the auxiliary electromagnetic field

strength present in our action is missing in the string σ-model. As a consequence, the dilaton

couplings of the two models differ by the fact that our string is additionally constrained to

live in a surface φ = const. On the other hand, the result of [6] that macroscopic strings

couple to metric and torsion the same way as fundamental strings couple to the low-energy

symmetric and antisymmetric string fields is still valid. It has been derived in [6] in the

absence of dilaton, but we have demonstrated here that it holds true in any case.

Finally, it should be noted that our effective string is a macroscopic classical object, which

has a-priori nothing to do with the fundamental string of the string theory. The background

fields Gµν(x), Bµν(x) and Φ(x) in (19) are just components of the dimensionally reduced

spacetime metric and torsion, as shown in (18).
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IV. ELECTRICALLY CHARGED STRING

We start with the observation that the equation (12b) implies the constraint ω̃µ∂µφ = 0,

which reduces to

̃a∂aφ = 0 (20)

in the generic case ω 6= 0. The general solution of this constraint has the form

̃a = e eab∂bφ , (21)

where e(ξ) is the residual coefficient that defines the distribution of electric charge along

the string. The isotropy violating vector valued coefficient ̃a(ξ) is thereby replaced by the

scalar e(ξ). In what follows, we shall restrict to the maximally symmetric case e = const.

Before we continue, let us note that the general solution (21) is incompatible with the

constraint ∂aφ = 0. Indeed, if ∂aφ = 0, the equation (20) is identically satisfied for any value

of the current ̃a, while the general solution (21) implies ̃a = 0. To avoid this inconsistency,

we are led to adopt ∂aφ 6= 0 in the subsequent considerations.

With these restrictions, the conservation equations (12a) are trivially satisfied, and the

world-sheet equations (12b) are simplified by using the redefined contortion

k̃µν ≡ kµν − e

3s
φfµν ,
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and redefined dilatonic charge

ω̃ ≡ ω + euµνfµν .

Indeed, in terms of k̃µν and ω̃, the world-sheet equations (12b) are rewritten as

T ∇̃au
a
µ =

3s

2
ũνλk̃µνλ +

ω̃

2
∂µφ .

As we can see, the resultant world-sheet equations contain no coupling to the electromagnetic

field. In fact, we can prove that they do not contain the dilaton coupling, either. To see

this, we project the above equation to the world-sheet, and obtain the familiar constraint

ω̃∂aφ = 0 .

This time, however, the generic choice ω̃ 6= 0 is forbidden by the fact that the whole analysis

of this section rests upon the assumption ∂aφ 6= 0. Indeed, if the dilatonic charge ω̃ was

assumed to have a non-zero value, the resulting constraint ∂aφ = 0 would contradict our

introductory assumptions. Therefore, we are led to constrain ω̃ to zero,

ω̃ = 0
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With this, the world-sheet equations are reduced to

T ∇̃au
a
µ =

3s

2
ũνλk̃µνλ (22)

showing that our macroscopic string can not probe the background electromagnetic and

dilaton fields. As opposed to the electrically neutral case of the preceding section, the

electrically charged string is not constrained to live on a surface of constant φ. In fact, it is

only the string interior that has this freedom, because the string boundary is additionally

constrained by the boundary conditions (13). In terms of k̃µν , these are rewritten as

e va∂aφ
∣∣
∂M2

= 0 , (23a)

ña

[
Tua

µ + ẽabuν
b

(
3s k̃µν + eφfµν

)] ∣∣∣
∂M2

= 0 , (23b)

where va ≡ dζa/dτ is the boundary tangent vector (the string boundary is defined by

ξa = ζa(τ)). As we can see, the coupling to the electromagnetic field reappears in the

boundary conditions, and the corresponding coupling constant is defined as the boundary

value of eφ. That it is indeed constant is seen from the boundary condition (23a), which is

rewritten as

dφ

dτ
= 0 (24)

in the generic case e 6= 0. Thus, the value of the dilaton field is constant along the string

boundary, which implies that the string ends are confined to live on surfaces of constant φ.
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Precisely,

each end of an electrically charged string lives in a surface

φ(x) = const.

At the same time, its interior freely moves in all D dimensions. This way, a classical analogue

of the known D-brane concept is obtained. In the generic situation, the surfaces of constant

φ define codimension-1 branes. Higher codimension branes, on the other hand, are not so

easy to define. This is because the higher codimension surfaces φ(x) = const violate the

condition ∂µφ 6= 0 needed for the boundary condition (23a) to make sense. What one can do

is to consider specific dilaton configurations characterized by a dense distribution of regular

codimension-1 surfaces near a singular lower-dimensional brane. A particularly interesting

situation arises in brane-world scenarios where the bulk dilaton is localized in all but four

dimensions. In such spacetimes, the string ends are attached to 3-branes.

To summarize, we have shown that the effective string dynamics is governed by the world-

sheet equations (22), and boundary conditions (23). The equations are parametrized by

three constant parameters. The constant parameters T and s define uniform distribution of

stress-energy and spin along the string, while parameter e stems from the conserved electric

charge located at the string ends. As a consequence, only the string boundary couples to

the external electromagnetic field.

It is seen that the two string ends may have different coupling constants. Indeed, if the

string is stretched between two different surfaces, let us say

φ(x) = φ1 and φ(x) = φ2 ,

the respective coupling constants eφ1 and eφ2 generally differ. For this reason, the generic

electromagnetic coupling can not be removed by a simple redefinition of external fields. How-

ever, if we restrict our considerations to strings whose both ends are attached to a single
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brane, let us say φ(x) = φ0 the electromagnetic coupling is removed by a simple

redefinition

k̃µν → k̃µν − eφ0

3s
fµν

The resultant string equations almost coincide with those of the trivial case ̃a = ω = 0. The

only difference is that the ends of such electrically charged string are additionally confined

to live in a single surface φ(x) = const.

At the end, let us construct the corresponding action functional, and compare our result

with the string theory literature. It is immediately seen that our world-sheet equations (22)

coincide with the corresponding string theory equations. However, the boundary conditions

(23) are more restrictive than the Dirichlet boundary conditions employed in string theory.

In the next section, we shall demonstrate how a small modification of the membrane con-

stituent matter leads to the improved effective string dynamics. Precisely, we shall consider

a membrane with massive boundary, which ultimately leads to an effective string with par-

ticles attached to its ends. The resulting effective string dynamics and classical D-branes

will follow from an action functional that coincides with that of string theory.
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V. MEMBRANE WITH MASSIVE BOUNDARY

In this section, we shall consider a membrane with massive, spinless boundary. To this

end, we modify the stress-energy tensor (3a) as follows:

θµν =

∫

M3

d3ξ
√−γ T µν δ(D)(x− z(ξ))√−g

+

∫

∂M3

d2λ
√
−δ tµν δ(D)(x− z(ζ))√−g

. (25)

Here, tµν(λ) are free coefficients, δij ≡ γabv
a
i v

b
j is the boundary induced metric, and va

i ≡
∂ζa/∂λi. The membrane boundary is defined by ξa = ζa(λ) and is denoted by ∂M3.

The spinless character of the boundary matter is taken into account by keeping the spin

tensor (3b) unmodified.

It is immediately seen that the modification (25) does not influence the membrane interior.

For this reason, the corrections are expected only at the boundary, while the world-sheet

equations retain the same form as derived in the previous sections. The procedure for solving

the covariant conservation equations (2) is the same as in section I. We adopt the same

assumptions about the maximal symmetry of the spin tensor, while keeping the stress-energy

arbitrary. As a consequence, the membrane world-sheet equations remain unchanged, while

boundary conditions acquire an additional term. Using the (D + 1)-dimensional notation,

the resulting membrane world-sheet equations are given by (10a), while boundary conditions

become

∇i

(
ρijVjM

)
= NA

(
mABUBM +

3s

2
eABCKBCM

)
. (26)
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Here, mAB(ξ) and ρij(λ) are the residual free coefficients, and ∇i is a total covariant deriv-

ative that acts on all three types of indexes [4, 5]. While mAB stands for the stress-energy

of the membrane interior, the ρij represents the stress-energy of the membrane boundary.

What we are really interested in is the dynamics of effective string obtained after D+1 →
D dimensional reduction. The procedure is the same as in section II, leading to the same

world-sheet equations (12). In the case of electrically charged string, these reduce to (22),

irrespectively of the presence of massive particles on its ends. In what follows, we shall

examine their boundary conditions.

The dimensional reduction of boundary conditions goes as follows. The membrane bound-

ary ∂M3 is given by ξA = ζA(λi) , where λi (i = 1, 2) are the boundary coordinates. It is

chosen in the form

ξa = ζa(λ0) , ξ2 = λ1 , (27)

so that the boundary tangent vectors V A
i ≡ ∂ζA/∂λi become V a

0 = va ≡ dζa/dτ , V a
1 =

V 2
0 = 0, and V 2

1 = 1. The notation λ0 ≡ τ is introduced for convenience. In what follows,

ξa = ζa(τ) will be referred to as the string boundary ∂M2. The induced metric on ∂M2 is

defined by ds2 = v2dτ 2, where v2 ≡ γabv
avb.

Before we proceed, let us introduce a proper decomposition of the boundary stress-energy

ρij. Following the ideas of section II, we shall relax the maximal symmetry of ρij = mδij by

adopting the decomposition

ρij = mδij + θij. (28a)

Here, m is a constant, and θij = θij(τ), in accordance with the adopted Kaluza-Klein ansatz.

We shall see later that the constant m is related to the masses of the attached particles.

The role of θij is to violate the maximal symmetry of the boundary stress-energy ρij = mδij

in a way which will preserve the maximal symmetry of the effective string boundary after

dimensional reduction. To this end, we adopt the additional constraint θ00 = 0, lading to
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θij ≡

 0 π

π θ − 2aπ


 (28b)

This specific decomposition ensures tensorial character of the new parameters π(τ) and θ(τ).

With respect to reparametrizations τ ′ = τ ′(τ), π transforms as a contravariant vector, and

θ as a scalar. We shall see later that π and θ are related to the electric and dilatonic charges

of the attached particles.

We can now dimensionally reduce the boundary conditions (26). Using the known form

of the electric current (21), the y component takes the form

π =
q − eφ

φ5/4
√−ṽ2

,

showing that the role of π is taken over by the new constant q. While e defines uniform

distribution of electric charge along the string, the constant q stands for the electric charge

of the attached particle. This is why both string ends must have the same e, but allow

different values of q. The µ components are obtained in a similar way. In terms of our

previously redefined fields, they read

m̃∇̃
(

ṽµ

ṽ2

)
= ña

(
Tua

µ + ẽabuν
bQµν

)
+ θ̃∂µφ , (29)

where m̃ ≡ mφ−1/4 and θ̃ ≡ (θ/2 + m/4φ)φ−1/4 are new constant parameters, while
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Qµν ≡ 3s k̃µν + qfµν

is introduced to shorten the expressions. The projection of (29) to the string boundary

immediately yields the constraint θ̃vµ∂µφ = 0, which in the generic situation θ̃ 6= 0, reduces

to

dφ

dτ
= 0

Thus, the string ends are confined to live in surfaces of constant φ irrespectively of the

presence of massive particles. The constant parameters T and s represent the string tension

and spin, whereas m̃ and q stand for the conserved particle mass and electric charge. The

remaining free coefficient θ̃ is the only arbitrary function of τ in the string equations.

The action functional that governs the world-sheet equations (22), and boundary condi-

tions (29) is constructed as follows. First, the existence of a surface that traps the string

ends is taken for granted. It is promoted into an external constraint to be unconditionally

satisfied without questioning its origin. This way, the variation of yet to be constructed ac-

tion becomes subject to Dirichlet conditions. Second, we note that the only purpose of the

undetermined coefficient θ̃ in (29) is to tell us that the remaining part of (29) is orthogonal

to the surface φ = const. Indeed, the constraint (29) can equivalently be written as

P‖µ
ρ

[
m̃∇̃

(
ṽρ

ṽ2

)
− ña

(
Tua

ρ + ẽabuν
bQρν

)]
= 0 (30)

where P‖µ
ρ is the projector to the surface φ = const. As we can see, neither dilaton nor θ̃

coefficient appear in this form of the equation (29).
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Now, it is not difficult to check that the needed action functional has the form

I =

∫
d2ξ

√
−γ̃

(
T +

3s

2
ũµνk̃µν

)
+ m̃

∮
ds̃ + q

∮
aµdxµ (31)

The first integral in (31) goes over the string world-sheet M2, while the last two sweep the

string boundary ∂M2. The induced metric on ∂M2 is defined by ds̃2 = ṽ2dτ 2.

The action functional (31) is varied respecting the Dirichlet
boundary conditions φ = const. As a result, the world-sheet equations (22),

and boundary conditions (30) (equivalently (29)) are obtained. The two coupling constants,

m̃ and q, stand for the mass and electric charge of the particles attached to the string

ends. In the limit m̃, q → 0 (light neutral particles), the conventional string theory result

is recovered. We can say that we indeed succeeded in obtaining the macroscopic D-brane

analogue.

In the end, let us emphasize once more that our derivations have nothing to do with

the conventional string theory. The action functional (31) describes a stringlike extended

object in dimensionally reduced Riemann-Cartan spacetime, and nothing more. It is only

the form of this action that brings the associations with string theory. Indeed, one can not

help noticing that our macroscopic string couples to metric and torsion the same way as

fundamental string couples to the low energy string fields. This may be just a coincidence,

but we believe it deserves the attention of the scientific community.

22



VI. CONCLUDING REMARKS

In this paper, we have analyzed the behavior of a cylindrical membrane wrapped around

the extra compact dimension of a (D + 1)-dimensional Riemann-Cartan spacetime. The

membrane constituent matter is specified in terms of its stress-energy and spin tensors. A

membrane with maximally symmetric distribution of stress-energy and spin has already been

considered in [6]. After dimensional reduction, such a membrane has been shown to reduce

to a string that couples to the metric and torsion the same way as fundamental string couples

to the low-energy string fields Gµν and Bµν . In [7], the condition of maximal symmetry used

in [6] has been relaxed. The effective string has been shown to carry two more charges, and

to additionally couple to the electromagnetic and scalar fields of the dimensionally reduced

geometry. Unfortunately, the precise form of these couplings has been missed, owing to the

erroneous analysis in the final sections of [7].

In this paper, we have derived how exactly the effective string couples to the effective

background geometry. In particular, we have discovered that coupling of an electrically

charged string to the external electromagnetic field is located on the string boundary. The

form of the coupling coincides with that found in string theory literature, but the string

ends are additionally constrained to live on surfaces φ(x) = const. This way, a macroscopic

analogue of the known D-brane concept has been obtained. We have shown that the con-

cept survives irrespectively of the presence of massive particles on the string ends. In the

electrically neutral case, when the electromagnetic coupling is absent, we have demonstrated

that the resulting string dynamics follows from the action functional which almost coincides

with the string σ-model action of [10–15]. The two actions differ in one instance only: the

auxiliary electromagnetic field present in our action is missing in the string σ-model. As a

consequence, the dilaton couplings of the two models differ by the fact that our string is ad-

ditionally constrained to live in a surface φ(x) = const. On the other hand, the result of [6]

that macroscopic strings couple to metric and torsion the same way as fundamental strings

couple to the low-energy symmetric and antisymmetric string fields has been confirmed.

Let us say something about the dynamics of Riemann-Cartan geometry itself. We have

already established correspondence between the macroscopic string dynamics in Riemann-

Cartan spacetime, and the fundamental string dynamics in the low-energy string back-
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grounds. In this correspondence, the string background fields Gµν , Bµν , Aµ and Φ are

related to the metric and torsion of the Riemann-Cartan spacetime. An interesting chal-

lenge would be to establish the correspondence on the level of background field equations.

There have been attempts in literature to rewrite the low energy string field action in geo-

metric terms [18, 19]. These have not been very successful though, as they included some

unnatural constraints to be imposed on torsion prior to varying the action. If we stay with

membranes, however, the construction of the needed action is quite simple. One should start

with the low energy string field action, and replace the symmetric field with the spacetime

metric, and the 3-form field with the axial component of the torsion. As an example, we

may take the action of 11-dimensional supergravity as our starting point. It describes the

low-energy limit of M-theory, and its bosonic part is a functional of the metric and the

3-form field. In the low-energy approximation, the suggested geometrization scheme leads

to

I =

∫
d11X

√
−G

(
R + KMNLRKMNLR

)
,

where R stands for the 11-dimensional scalar curvature, and KMNLR is the antisymmetrized

derivative of the axial contortion KMNL. This is a purely geometric action that governs

the dynamics of 11-dimensional metric and torsion. After dimensional reduction, it turns

into an action that governs the dynamics of 10-dimensional fields gµν, aµ, φ,
kµν and Kµνλ. It takes the form I = I1 + I2 where

I1 =

∫
d10x

√
−g̃ e−φ̃

(
R̃ + 4k̃µνλk̃µνλ +

5

6
φ̃,µφ̃,µ

)

I2 =

∫
d10x

√
−g̃

(
−1

4
fµνfµν +KµνλρKµνλρ

)
.
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Here, the dimensionally reduced action has been rewritten in terms of the rescaled metric g̃µν

and redefined torsion k̃µν , which appear in the string world-sheet equations of the preceding

sections. As for the redefined dilaton φ̃ ≡ ln φ3/2, it does not explicitly appear in our world-

sheet equations. Even so, the form of these equations is not significantly changed when

expressed in terms of φ̃. Indeed, the surfaces of constant φ are the same as those of constant

φ̃, while the other changes can be neutralized by a proper redefinition of the string free

parameters. We can say that the fields of I1 + I2 basically coincide with those appearing in

our string world-sheet equations.

Let us now compare our geometric action I1 + I2 with the similar low-energy string field

actions appearing in literature. In fact, by the very construction, we already know that I1+I2

is a geometric counterpart of the action that describes the bosonic part of the low-energy

sector in type IIA superstring theory. Indeed, the low-energy limit of type IIA superstring

theory is known to coincide with dimensionally reduced 11-dimensional supergravity whose

bosonic part we used as a starting point in constructing I = I1 + I2. Thus, we have

established the correspondence between the low-energy string fields and Riemann-Cartan

geometry. As it must be clear by now, this correspondence agrees with the correspondence

(18) established on the level of string world-sheet equations.

Finally, let us say something about dynamics of the D-brane itself. As we have seen, the

D-brane world-sheet is defined as a surface of constant φ. Obviously, the surface equations

are closely related to the background field equations. As an example, we could study the

background field equations of the geometric action I1 + I2. Such an attempt, however,

generically leads to a non-local brane dynamics. A promising way to obtain a reasonable

result would be to employ an external branelike matter source, with the idea to confine

the φ field. If we could achieve this, the constant dilaton surfaces would be dense on the

brane, and rare otherwise. This way, the massive branelike source would take the role of the

classical D-brane of the preceding section. The investigation along these lines, however, lies

outside the scope of this paper, and will be considered elsewhere.
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[3] M. Vasilić and M. Vojinović, Phys. Rev. D 73, 124013 (2006).
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